Reputation: 1353
Someone here already kindly provided part of the following code:
library(dplyr)
set.seed(12345)
df1 = data.frame(a=c(rep("a",8), rep("b",5), rep("c",7), rep("d",10)),
b=rnorm(30, 6, 2),
c=rnorm(30, 12, 3.5),
d=rnorm(30, 8, 3)
)
df2 = data.frame(b= 1.5,
c= 13,
d= 0.34
)
df1_z <- df1 %>%
group_by(a) %>%
mutate(across(b:d, list(zscore = ~as.numeric(scale(.))))) %>%
ungroup %>%
mutate(total = rowSums(select(., ends_with('zscore'))))
This was exactly what I wanted at the time, but now I would like something slightly different. In df1_z
, instead of the values in the last column called "total", I would like this value to be the sum of the multiplications of the values in the _zscore
column and the corresponding values in df2
, so: b_zscore x 1.5 + c_zscore x 13 + d_zscore x 0.34.
For example, the first value would be 0.6971403 x 1.5 + 0.100595417 x 13 + 0.01790090 x 0.34 = 2.359537177. Expected outcome for the new total
column:
total
2.359537177
16.04147765
13.64141872
9.146152274
-3.380574542
-5.55439223
etc...
How to modify above code to get this result in the new "total" column of df1_z
?
Upvotes: 0
Views: 43
Reputation: 14774
Another option:
library(tidyverse)
df1 %>%
group_by(a) %>%
mutate(across(b:d, list(zscore = ~as.numeric(scale(.))))) %>%
ungroup %>%
mutate(total = rowSums(map2_dfc(select(., contains('zscore')), df2, `*`)))
Output:
# A tibble: 30 x 8
a b c d b_zscore c_zscore d_zscore total
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 a 7.17 14.8 8.45 0.697 0.101 0.0179 2.36
2 a 7.42 19.7 3.97 0.841 1.17 -1.14 16.0
3 a 5.78 19.2 9.66 -0.108 1.05 0.332 13.6
4 a 5.09 17.7 12.8 -0.508 0.732 1.14 9.15
5 a 7.21 12.9 6.24 0.721 -0.329 -0.555 -3.38
6 a 2.36 13.7 2.50 -2.09 -0.146 -1.52 -5.55
7 a 7.26 10.9 10.7 0.749 -0.774 0.593 -8.74
8 a 5.45 6.18 12.8 -0.302 -1.80 1.14 -23.5
9 b 5.43 18.2 9.55 -0.445 1.12 1.34 14.4
10 b 4.16 12.1 4.11 -1.06 0.0776 -1.02 -0.933
# ... with 20 more rows
Upvotes: 1
Reputation: 79348
You could use the crossprod
function:
df1 %>%
group_by(a) %>%
mutate(across(b:d, list(zscore = ~as.numeric(scale(.))))) %>%
ungroup %>%
mutate(total = c(crossprod(t(select(., ends_with('zscore'))),t(df2))))
# A tibble: 30 x 8
a b c d b_zscore c_zscore d_zscore total
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 a 7.17 14.8 8.45 0.697 0.101 0.0179 2.36
2 a 7.42 19.7 3.97 0.841 1.17 -1.14 16.0
3 a 5.78 19.2 9.66 -0.108 1.05 0.332 13.6
4 a 5.09 17.7 12.8 -0.508 0.732 1.14 9.15
5 a 7.21 12.9 6.24 0.721 -0.329 -0.555 -3.38
6 a 2.36 13.7 2.50 -2.09 -0.146 -1.52 -5.55
7 a 7.26 10.9 10.7 0.749 -0.774 0.593 -8.74
8 a 5.45 6.18 12.8 -0.302 -1.80 1.14 -23.5
9 b 5.43 18.2 9.55 -0.445 1.12 1.34 14.4
10 b 4.16 12.1 4.11 -1.06 0.0776 -1.02 -0.933
# ... with 20 more rows
Upvotes: 2