Reputation: 41
How to use isin with or (?), when I know that my data to match in df1 will be distributed across 2 columns (Title, ID).
Below code works if you delete ' or df1[df1.ID.isin(df2[column])] '
import pandas as pd
df1 = pd.DataFrame({'Title': ['A1', 'A2', 'A3', 'C1', 'C2', 'C3'],
'ID': ['B1', 'B2', 'B3', 'D1', 'D2', 'D3'],
'Whole': ['full', 'full', 'full', 'semi', 'semi', 'semi']})
df2 = pd.DataFrame({'Group1': ['A1', 'A2', 'A3'],
'Group2': ['B1', 'B2', 'B3']})
df = pd.DataFrame()
for column in df2.columns:
d_group = (df1[df1.Title.isin(df2[column])] or df1[df1.ID.isin(df2[column])])
df3 = d_group.groupby('Whole')['Whole'].count()\
.rename(column, inplace=True)\
.reindex(['part', 'full', 'semi'], fill_value='-')
df = df.append(df3, ignore_index=False, sort=False)
print(df)
Desired output:
| full | part | semi
--------+---------+----------+----------
Group1 | 3 | - | -
Group2 | 3 | - | -
Upvotes: 0
Views: 110
Reputation: 591
you need to use |
instead of or
and make sure you use the []
correctly to sub-select from the df you want. In general the notation is df[selection_filter]
import pandas as pd
df1 = pd.DataFrame({'Title': ['A1', 'A2', 'A3', 'C1', 'C2', 'C3'],
'ID': ['B1', 'B2', 'B3', 'D1', 'D2', 'D3'],
'Whole': ['full', 'full', 'full', 'semi', 'semi', 'semi']})
df2 = pd.DataFrame({'Group1': ['A1', 'A2', 'A3'],
'Group2': ['B1', 'B2', 'B3']})
df = pd.DataFrame()
for column in df2.columns:
d_group = df1[df1.Title.isin(df2[column]) | df1.ID.isin(df2[column])]
df3 = d_group.groupby('Whole')['Whole'].count()\
.rename(column, inplace=True)\
.reindex(['part', 'full', 'semi'], fill_value='-')
df = df.append(df3, ignore_index=False, sort=False)
print(df)
Upvotes: 1