Reputation: 442
I have a dataframe that looks like the following:
arr = pd.DataFrame([[0,0],[0,1],[0,4],[1,4],[1,5],[1,6],[2,5],[2,8],[2,6])
My desired output is booleans that represent whether the value in column 2 is in the next consecutive group or not. The groups are represented by the values in column 1. So for example, 4 shows up in group 0 and the next consecutive group, group 1:
output = pd.DataFrame([[False],[False],[True],[False],[True],[True],[Nan],[Nan],[Nan]])
The outputs for group 2 would be Nan because group 3 doesn't exist.
So far I have tried this:
output = arr.groupby([0])[1].isin(arr.groupby([0])[1].shift(periods=-1))
This doesn't work because I can't apply the isin()
on a groupby series
.
Upvotes: 1
Views: 154
Reputation: 9639
You could create a helper column with lists of shifted group items, then check against that with a function that returns True
, False
of NaN
:
import pandas as pd
import numpy as np
arr = pd.DataFrame([[0,0],[0,1],[0,4],[1,4],[1,5],[1,6],[2,5],[2,8],[2,6]])
arr = pd.merge(arr, arr.groupby([0]).agg(list).shift(-1).reset_index(), on=[0], how='outer')
def check_columns(row):
try:
if row['1_x'] in row['1_y']:
return True
else:
return False
except:
return np.nan
arr.apply(check_columns, axis=1)
Result:
0 False
1 False
2 True
3 False
4 True
5 True
6 NaN
7 NaN
8 NaN
Upvotes: 1