Reputation: 6386
I've been searching for actual working code where an overloaded false
operator actually gets executed.
This question (What's the false operator in C# good for?) is somewhat the same, but the accepted answer links to an url which is returning a 404 error. I've also looked at How does operator overloading of true and false work? and some other questions.
What I've found in almost all answers is that false
only gets executed when you use a short circuited and like x && y
. This is evaluated as T.false(x) ? x : T.&(x, y)
.
Ok, so I have the following code. The struct
contains an int
and considers itself true if the int is greater than zero.:
public struct MyStruct {
private int _i;
public MyStruct(int i) {
_i = i;
}
public static bool operator true(MyStruct ms) {
return ms._i > 0;
}
public static bool operator false(MyStruct ms) {
return ms._i <= 0;
}
public override string ToString() {
return this._i.ToString();
}
}
Now I would hope the following program will execute and use the overloaded false
operator.
class Program {
private static void Main() {
MyStruct b1 = new MyStruct(1); // to be considered true
MyStruct b2 = new MyStruct(-1); // to be considered false
Console.WriteLine(b1 && b2);
Console.WriteLine(b2 && b1);
}
}
However, it does not even compile. It says it cannot apply operator '&&' to operands of type 'MyStruct' and 'MyStruct'.
I know I can implement an overload of the &
operator. So let's do that. The &
must return a MyStruct
, so I can not make it return a bool
.
public static MyStruct operator &(MyStruct lhs, MyStruct rhs) {
return new MyStruct(lhs._i & rhs._i);
}
Now the code does compile. Its output is 1
and -1
. So the result of b1 && b2
is not the same as that of b2 && b1
.
If I debug the code, I see that b1 && b2
first executes the false
operator on b1
, which returns false
. Then it performs the &
operator on b1 and b2, which performs a bitwise and on 1 and -1, resulting in 1. So it indeed is first checking if b1 is false.
The second expression, b2 && b1
first executes the false
operator on b2
, which returns true
. Combined with the fact I'm using short circuiting, it doesn't do anything with b1
and just prints out the value of b2
.
So yes, the false
operator is executed when you use short circuiting. However, it does not execute the true
or false
operator on the second argument, but instead executes the overloaded &
operator on the operands.
When can this ever be useful? Or how can I make my type so that it can check if the two variables both are true?
Upvotes: 10
Views: 1042
Reputation: 159
The point of true/false operators is to provide boolean logic semantics without the need for implicit conversion to bool
.
If you allow your type to implicitly cast into bool
, the true/false operators are no longer needed. But if you want only explicit conversion, or no conversion, but still want to allow your type as a condition in if
or while
expresssion, you can use true
and false
operators.
Upvotes: 0
Reputation: 13198
From Microsoft (http://msdn.microsoft.com/en-us/library/6292hy1k.aspx):
Prior to C# 2.0, the true and false operators were used to create user-defined nullable value types that were compatible with types such as SqlBool. However, the language now provides built-in support for nullable value types, and whenever possible you should use those instead of overloading the true and false operators.
If you're looking to just evaluate your object to a boolean, remove the operator true and operator false overloads and just use the bool overload.
Upvotes: 1
Reputation: 4418
Answering your last question: "how can I make my type so that it can check if the two variables both are true?" - just use the &
operator. The whole point of &&
is to short circuit, so that the second argument isn't checked when not necessary.
Check this out:
Console.WriteLine(b1 & b2); // outputs 1
Console.WriteLine(b2 & b1); // outputs 1
You are actually missing one important bit which will allow you to use MyStruct (with &
and |
) as a boolean - an implicit cast to bool
:
public static implicit operator bool(MyStruct ms) {
return ms._i > 0;
}
This allows you to use MyStruct (so also the result of the operators) as such:
if (b1 & b2)
Console.WriteLine("foo");
As the last, possibly most important, note: the problem in your example comes from the fact that you want to do logical operations (check whether 2 instances of MyStruct
are true
), but your &
operator is implemented incorrectly for such a purpose. It works in terms of binary arithmetic, yielding an instance of MyStruct
with value 1
when called with arguments MyStruct(1)
(true
) and MyStruct(-1)
(false
). So it basically does (true & false) == true
. This is why b1 && b2
gives a different result than b2 && b1
in your example. Any further logic based off of this operator will be broken and unpredictable. Behavior of &&
, which is implemented in .NET in terms of false
and &
, confirms this.
EDIT: you want to be able to use MyStruct
as a boolean. You implement operators true
and false
and expect &&
and ||
to work in terms of boolean logic. However, you implement &
in terms of binary arithmetics (using &
on int
fields), which makes this implementation of &
not compatible with the boolean logic you expect ((1 & -1) == 1
, which means (true & false) == false
in your interpretation of MyStruct
boolean value). Now, consider that &&
in general is not a logical operator (it doesn't return a bool
) - it is a short circuit implemented as T.false(x) ? x : T.&(x, y)
. Note that it returns MyStruct
in your case, which you just interpret as true
or false
based on the value of its field. The bottom line: you expect &&
to do a logical test on both operands, but the .NET implementation of &&
uses your implementation of &
, which is not compatible with the boolean logic you expect.
Upvotes: 1
Reputation: 6017
EDIT-
Reading the linked article I was able to get the following output which uses both the true and false operators:
op false on 1
op & on 1 -1
op true on 1
op true on -1
FALSE
op false on -1
op true on -1
FALSE
op true on 1
op true on 1
TRUE
op true on -1
op & on -1 1
op true on -1
op true on 1
TRUE
With the code:
class Program
{
static void Main(string[] args)
{
MyStruct b1 = new MyStruct(1); // to be considered true
MyStruct b2 = new MyStruct(-1); // to be considered false
Console.WriteLine((b1 && b2) ? "TRUE" : "FALSE");
Console.WriteLine((b2 && b1) ? "TRUE" : "FALSE");
Console.WriteLine((b1 || b2) ? "TRUE" : "FALSE");
Console.WriteLine((b2 || b1) ? "TRUE" : "FALSE");
Console.ReadLine();
}
}
public struct MyStruct
{
private int _i;
public MyStruct(int i)
{
_i = i;
}
public static bool operator true(MyStruct ms)
{
Console.WriteLine("op true on {0}", ms);
return ms._i > 0;
}
public static bool operator false(MyStruct ms)
{
Console.WriteLine("op false on {0}", ms);
return ms._i <= 0;
}
public static MyStruct operator &(MyStruct lhs, MyStruct rhs)
{
Console.WriteLine("op & on {0} {1}", lhs, rhs);
if (lhs)
{
return rhs;
}
else
{
return new MyStruct(-1); //-1 is false
}
}
public static MyStruct operator |(MyStruct lhs, MyStruct rhs)
{
Console.WriteLine("op & on {0} {1}", lhs, rhs);
if (lhs)
{
return lhs;
}
else
{
return rhs;
}
}
public override string ToString()
{
return this._i.ToString();
}
}
I'm not sure what you mean when you say the first code can't compile, although it doesnt use the operator true/false, I ran the following code in 2010 express and got the output:
op bool on 1
op bool on -1
False
op bool on -1
False
op bool on -1
op bool on 1
True
op bool on 1
True
Code:
class Program
{
static void Main(string[] args)
{
MyStruct b1 = new MyStruct(1); // to be considered true
MyStruct b2 = new MyStruct(-1); // to be considered false
Console.WriteLine(b1 && b2);
Console.WriteLine(b2 && b1);
Console.WriteLine(b2 || b1);
Console.WriteLine(b1 || b2);
Console.ReadLine();
}
}
public struct MyStruct
{
private int _i;
public MyStruct(int i)
{
_i = i;
}
public static bool operator true(MyStruct ms)
{
Console.WriteLine("op true on {0}", ms);
return ms._i > 0;
}
public static bool operator false(MyStruct ms)
{
Console.WriteLine("op false on {0}", ms);
return ms._i <= 0;
}
public static implicit operator bool(MyStruct ms)
{
Console.WriteLine("op bool on {0}", ms);
return ms._i > 0;
}
public override string ToString()
{
return this._i.ToString();
}
}
Upvotes: 4
Reputation: 16757
The contents of the URL you mentioned that was 404 can be found here:
http://web.archive.org/web/20080613013350/http://www.ayende.com/Blog/archive/2006/08/04/7381.aspx
The article that the author is referring to is here:
To avoid the same issue again, here is the highlights from the article:
A couple months ago I posted about our query API along with an explanation of how it works. Our query API allows us to express our queries using strongly typed C# syntax:
List<Customer> customers = repository.FindAll(Customer.Columns.Age == 20 & Customer.Columns.Name == “foo”);
One of the things I pointed out in my previous posts was that I couldn’t overload the && and || operators directly since the framework doesn’t allow such craziness…at least not directly.
In particular, it is not possible to overload member access, method invocation, or the =, &&, ||, ?:, checked, unchecked, new, typeof, as, and is operators. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csspec/html/vclrfcsharpspec_7_2_2.asp
Over the last month I’ve done a little investigation on the topic to see if and how I can get && and || to behave the way I want. This evening I came across the Conditional logical operators page on MSDN which gave me the answer I was looking for:
The operation x && y is evaluated as T.false(x) ? x : T.&(x, y), where T.false(x) is an invocation of the operator false declared in T, and T.&(x, y) is an invocation of the selected operator &. In other words, x is first evaluated and operator false is invoked on the result to determine if x is definitely false. Then, if x is definitely false, the result of the operation is the value previously computed for x. Otherwise, y is evaluated, and the selected operator & is invoked on the value previously computed for x and the value computed for y to produce the result of the operation. The operation x || y is evaluated as T.true(x) ? x : T.|(x, y), where T.true(x) is an invocation of the operator true declared in T, and T.|(x, y) is an invocation of the selected operator |. In other words, x is first evaluated and operator true is invoked on the result to determine if x is definitely true. Then, if x is definitely true, the result of the operation is the value previously computed for x. Otherwise, y is evaluated, and the selected operator | is invoked on the value previously computed for x and the value computed for y to produce the result of the operation. Since we already have the & and | operators in place it was simply a matter of overloading the true and false operators to both return false. This results in the & and | operators always being called which in turn results in the two criteria objects being turned into an AndCriteria/OrCriteria!
So now we can express our criteria expressions using the && and || syntax we’re accustomed to.
repository.FindAll(Customer.Columns.Age == 20 && Customer.Columns.Name == “foo”);
repository.FindAll(Customer.Columns.FirstName == “Foo” || Customer.Columns.LastName == “Bar”);
The relevant operator overloads are shown below.
public static bool operator true(Criteria<T> criteria) {
return false;
}
public static bool operator false(Criteria<T> criteria) {
return false;
}
public static Criteria<T> operator &(Criteria<T> lhs, Criteria<T> rhs) {
return new AndCriteria<T>(lhs, rhs);
}
public static Criteria<T> operator |(Criteria<T> lhs, Criteria<T> rhs) {
return new OrCriteria<T>(lhs, rhs);
}
Upvotes: 5