Reputation: 583
I have a sample dataframe below:
sn C1-1 C1-2 C1-3 H2-1 H2-2 K3-1 K3-2
1 4 3 5 4 1 4 2
2 2 2 0 2 0 1 2
3 1 2 0 0 2 1 2
I will like to sum based on the prefix of C1, H2, K3 and output three new columns with the total sum. The final result is this:
sn total_c1 total_h2 total_k3
1 12 5 6
2 4 2 3
3 3 2 3
What I have tried on my original df:
lst = ["C1", "H2", "K3"]
lst2 = ["total_c1", "total_h2", "total_k3"]
for k in lst:
idx = df.columns.str.startswith(i)
for j in lst2:
df[j] = df.iloc[:,idx].sum(axis=1)
df1 = df.append(df, sort=False)
But I kept getting error
IndexError: Item wrong length 35 instead of 36.
I can't figure out how to append the new total column to produce my end result in the loop.
Any help will be appreciated (or better suggestion as oppose to loop). Thank you.
Upvotes: 1
Views: 62
Reputation: 28699
Another option, where we create a dictionary to groupby the columns:
mapping = {entry: f"total_{entry[:2]}" for entry in df.columns[1:]}
result = df.groupby(mapping, axis=1).sum()
result.insert(0, "sn", df.sn)
result
sn total_C1 total_H2 total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3
Upvotes: 0
Reputation: 323306
Let us try ,split
then groupby
with it with axis=1
out = df.groupby(df.columns.str.split('-').str[0],axis=1).sum().set_index('sn').add_prefix('Total_').reset_index()
Out[84]:
sn Total_C1 Total_H2 Total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3
Upvotes: 0
Reputation: 150765
You can use groupby
:
# columns of interest
cols = df.columns[1:]
col_groups = cols.str.split('-').str[0]
out_df = df[['sn']].join(df[cols].groupby(col_groups, axis=1)
.sum()
.add_prefix('total_')
)
Output:
sn total_C1 total_H2 total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3
Upvotes: 1