Reputation: 418
I am running a below spark submit command in dataproc cluster, but I noticed that few of the spark configuration are being ignored. May I know the reason why they are being ignored?
gcloud dataproc jobs submit spark --cluster=<Cluster> --class=<class_name> --jars=<list_of_jars> --region=<region> --files=<list_of_files> --properties=spark.driver.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties",spark.executor.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties, spark.executor.instances=36, spark.executor.cores=4, spark.executor.memory=4G, spark.driver.memory=8G, spark.shuffle.service.enabled=true, spark.yarn.maxAppAttempts=1, spark.sql.shuffle.partitions=200, spark.executor.memoryOverhead=7680, spark.driver.maxResultSize=0, spark.port.maxRetries=250, spark.dynamicAllocation.initialExecutors=20, spark.dynamicAllocation.minExecutors=10"
Warning: Ignoring non-Spark config property: spark.driver.maxResultSize
Warning: Ignoring non-Spark config property: spark.driver.memory
Warning: Ignoring non-Spark config property: spark.dynamicAllocation.minExecutors
Warning: Ignoring non-Spark config property: spark.executor.cores
Warning: Ignoring non-Spark config property: spark.port.maxRetries
Warning: Ignoring non-Spark config property: spark.yarn.maxAppAttempts
Warning: Ignoring non-Spark config property: spark.dynamicAllocation.initialExecutors
Warning: Ignoring non-Spark config property: spark.executor.memory
Warning: Ignoring non-Spark config property: spark.executor.memoryOverhead
Warning: Ignoring non-Spark config property: spark.sql.shuffle.partitions
Warning: Ignoring non-Spark config property: spark.executor.instances
Upvotes: 1
Views: 1615
Reputation: 146
Can you try this one ?
gcloud dataproc jobs submit spark \
--cluster=<Cluster> \
--class=<class_name> \
--jars=<list_of_jars> \
--region=<region> \
--files=<list_of_files> \
--properties=^#^spark.driver.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties"#spark.executor.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties"#spark.executor.instances=36#spark.executor.cores=4#spark.executor.memory=4G#spark.driver.memory=8G#spark.shuffle.service.enabled=true#spark.yarn.maxAppAttempts=1#spark.sql.shuffle.partitions=200#spark.executor.memoryOverhead=7680#spark.driver.maxResultSize=0#spark.port.maxRetries=250#spark.dynamicAllocation.initialExecutors=20#spark.dynamicAllocation.minExecutors=10
Upvotes: 0
Reputation: 42332
Try below instead. They are not extraJavaOptions
, but belongs to properties
.
gcloud dataproc jobs submit spark --cluster=<Cluster> --class=<class_name> --jars=<list_of_jars> --region=<region> --files=<list_of_files> --properties=spark.driver.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties",spark.executor.extraJavaOptions="-Dconfig.file=application_dev.json -Dlog4j.configuration=log4j.properties",spark.executor.instances=36,spark.executor.cores=4,spark.executor.memory=4G,spark.driver.memory=8G,spark.shuffle.service.enabled=true,spark.yarn.maxAppAttempts=1,spark.sql.shuffle.partitions=200,spark.executor.memoryOverhead=7680,spark.driver.maxResultSize=0,spark.port.maxRetries=250,spark.dynamicAllocation.initialExecutors=20,spark.dynamicAllocation.minExecutors=10
in a more readable form:
gcloud dataproc jobs submit spark --cluster=<Cluster> --class=<class_name> --jars=<list_of_jars> --region=<region> --files=<list_of_files>
--properties=spark.driver.extraJavaOptions="
-Dconfig.file=application_dev.json
-Dlog4j.configuration=log4j.properties
",spark.executor.extraJavaOptions="
-Dconfig.file=application_dev.json
-Dlog4j.configuration=log4j.properties
",
spark.executor.instances=36,
spark.executor.cores=4,
spark.executor.memory=4G,
spark.driver.memory=8G,
spark.shuffle.service.enabled=true,
spark.yarn.maxAppAttempts=1,
spark.sql.shuffle.partitions=200,
spark.executor.memoryOverhead=7680,
spark.driver.maxResultSize=0,
spark.port.maxRetries=250,
spark.dynamicAllocation.initialExecutors=20,
spark.dynamicAllocation.minExecutors=10
Upvotes: 2