Reputation: 99
library(rlang)
library(dplyr)
library(lubridate)
example = tibble(
date = today() + c(1:6),
foo = rnorm(6),
)
do.some.stuff <- function(data, foo.col){
sum.col = parse_expr(paste(expr_text(enexpr(foo.col)), "sum", sep="."))
max.col = parse_expr(paste(expr_text(enexpr(foo.col)), "max", sep="."))
cnt.col = parse_expr(paste(expr_text(enexpr(foo.col)), "cnt", sep="."))
select(data, date, {{ foo.col }}) %>%
filter(!is.na(date) & !is.na({{ foo.col }})) %>% mutate(
"{{ foo.col }}.cnt" := cumsum( !is.na({{ foo.col }}) ),
"{{ foo.col }}.sum" := cumsum({{ foo.col }}),
"{{ foo.col }}.max" := cummax( {{ sum.col }} ),
"{{ foo.col }}.mu" := {{ sum.col }} / {{ cnt.col }}
)
}
do.some.stuff(example, foo)
So the above code works just fine, but it is kind of ugly, particularly the three parse_expr
lines. i could rewrite the function as:
do.some.stuff <- function(data, foo.col){
sum.col = paste(expr_text(enexpr(foo.col)), "sum", sep=".")
max.col = paste(expr_text(enexpr(foo.col)), "max", sep=".")
cnt.col = paste(expr_text(enexpr(foo.col)), "cnt", sep=".")
select(data, date, {{ foo.col }}) %>%
filter(!is.na(date) & !is.na({{ foo.col }})) %>% mutate(
cnt.col := cumsum( !is.na({{ foo.col }}) ),
sum.col := cumsum({{ foo.col }}),
max.col := cummax( {{ parse_expr(sum.col) }} ),
"{{ foo.col }}.mu" := {{ parse_expr(sum.col) }} / {{ parse_expr(cnt.col) }}
)
}
But it's not a lot better. Is there any other ways to do accomplish this same behavior (I don't want to change the shape of the df, that part is not up to me) but kick the rlang dependency? This works just fine for now but I would like something cleaner / easier to read if it is possible. If it wasn't obvious, I am newish to metaprogramming in R although I do have experience in other languages.
Upvotes: 2
Views: 656
Reputation: 270075
Use across
with the .names
argument or if foo_cnt, etc. with an underscore is ok then just omit the .names
argument since that is the default.
library(dplyr)
library(tibble)
do.some.stuff.2 <- function(data, col) {
cnt <- function(x) cumsum(!is.na(x))
mx <- function(x) cummax(cumsum(x))
mu <- function(x) cumsum(x) / cnt(x)
data %>%
select(date, {{col}}) %>%
filter(!is.na(date) & !is.na({{col}})) %>%
mutate(across({{col}}, lst(cnt, sum=cumsum, max=mx, mu), .names = "{.col}.{.fn}" ))
}
# test
do.some.stuff.2(example, foo)
giving:
# A tibble: 6 x 6
date foo foo.cnt foo.sum foo.max foo.mu
<date> <dbl> <int> <dbl> <dbl> <dbl>
1 2021-02-11 -0.000202 1 -0.000202 -0.000202 -0.000202
2 2021-02-12 0.363 2 0.363 0.363 0.181
3 2021-02-13 1.27 3 1.63 1.63 0.543
4 2021-02-14 1.50 4 3.13 3.13 0.781
5 2021-02-15 1.00 5 4.13 4.13 0.826
6 2021-02-16 -0.458 6 3.67 4.13 0.612
Upvotes: 3
Reputation: 4497
This could be a simpler version of
library(rlang)
library(dplyr)
library(lubridate)
example = tibble(
date = today() + c(1:6),
foo = rnorm(6),
)
# This is your initial version of the code.
do.some.stuff <- function(data, foo.col){
sum.col = parse_expr(paste(expr_text(enexpr(foo.col)), "sum", sep="."))
max.col = parse_expr(paste(expr_text(enexpr(foo.col)), "max", sep="."))
cnt.col = parse_expr(paste(expr_text(enexpr(foo.col)), "cnt", sep="."))
select(data, date, {{ foo.col }}) %>%
filter(!is.na(date) & !is.na({{ foo.col }})) %>% mutate(
"{{ foo.col }}.cnt" := cumsum( !is.na({{ foo.col }}) ),
"{{ foo.col }}.sum" := cumsum({{ foo.col }}),
"{{ foo.col }}.max" := cummax( {{ sum.col }} ),
"{{ foo.col }}.mu" := {{ sum.col }} / {{ cnt.col }}
)
}
# Here is my version where foo.col is a character param
do.some.stuff_2 <- function(data, foo.col) {
data %>% select(date, !!foo.col) %>%
filter(!is.na(date) & !is.na(!!foo.col)) %>%
mutate(
# Here as foo.col is a character to add new column just combine them together
!!paste0(foo.col, ".cnt") := cumsum(!is.na(.data[[foo.col]])),
!!paste0(foo.col, ".sum") := cumsum(.data[[foo.col]]),
!!paste0(foo.col, ".max") := cummax(.data[[paste0(foo.col, ".sum")]]),
!!paste0(foo.col, ".mu") := .data[[paste0(foo.col, ".sum")]] /
.data[[paste0(foo.col, ".cnt")]]
)
}
identical(do.some.stuff(example, foo), do.some.stuff_2(example, "foo"))
You can learn more here: https://dplyr.tidyverse.org/articles/programming.html
Upvotes: 1