Reputation: 33
I am trying to write a function that uses dplyr::summarise
to obtain means of multiple columns of a data frame and assign dynamic names to the summarised columns using the new rlang
glue syntax and :=
operator.
Here's a simple example of my problem using the mtcars
dataset.
When summarising over just one column - the glue syntax works (i.e. the summarised column name is mean_mpg
):
mean_fun <- function(data, group_cols, summary_col) {
data %>%
group_by(across({{ group_cols }})) %>%
summarise("mean_{{ summary_col }}" := mean({{ summary_col }}, na.rm = T))
}
mean_fun(mtcars, c(cyl, gear), mpg)
cyl gear mean_mpg
<dbl> <dbl> <dbl>
1 4 3 21.5
2 4 4 26.9
3 4 5 28.2
4 6 3 19.8
5 6 4 19.8
6 6 5 19.7
7 8 3 15.0
8 8 5 15.4
But the equivalent does not name the cols properly when summarising over multiple columns:
mean_fun_multicols <- function(data, group_cols, summary_cols) {
data %>%
group_by(across({{ group_cols }})) %>%
summarise("mean_{{ summary_cols }}" := across({{ summary_cols }}, ~ mean(., na.rm = T)))
}
mean_fun_multicols(mtcars, c(cyl, gear), c(mpg, wt))
cyl gear `mean_c(mpg, wt)`$mpg $wt
<dbl> <dbl> <dbl> <dbl>
1 4 3 21.5 2.46
2 4 4 26.9 2.38
3 4 5 28.2 1.83
4 6 3 19.8 3.34
5 6 4 19.8 3.09
6 6 5 19.7 2.77
7 8 3 15.0 4.10
8 8 5 15.4 3.37
How can I get the summarised column names to read mean_mpg
and mean_wt
? And why does this not work?
I realise that there are likely many other ways to perform this task but I would like to know how to get this method (i.e. using tidy eval, rlang syntax in a bespoke function) to work for teaching purposes and my own understanding!
Thank you
Upvotes: 3
Views: 855
Reputation: 887771
We could use .names
in across
to rename
mean_fun_multicols <- function(data, group_cols, summary_cols) {
data %>%
group_by(across({{group_cols}})) %>%
summarise(across({{ summary_cols }},
~ mean(., na.rm = TRUE), .names = "mean_{.col}"), .groups = "drop")
}
-testing
mean_fun_multicols(mtcars, c(cyl, gear), c(mpg, wt))
# A tibble: 8 × 4
cyl gear mean_mpg mean_wt
<dbl> <dbl> <dbl> <dbl>
1 4 3 21.5 2.46
2 4 4 26.9 2.38
3 4 5 28.2 1.83
4 6 3 19.8 3.34
5 6 4 19.8 3.09
6 6 5 19.7 2.77
7 8 3 15.0 4.10
8 8 5 15.4 3.37
NOTE: The :=
is mainly used when there is a single column in tidyverse
If we use the OP's function, we are assigning multiple columns to a single column and this returns a tibble
instead of a normal column. We may need to unpack
library(tidyr)
> mean_fun_multicols(mtcars, c(cyl, gear), c(mpg, wt)) %>% str
`summarise()` has grouped output by 'cyl'. You can override using the `.groups` argument.
grouped_df [8 × 3] (S3: grouped_df/tbl_df/tbl/data.frame)
$ cyl : num [1:8] 4 4 4 6 6 6 8 8
$ gear : num [1:8] 3 4 5 3 4 5 3 5
$ mean_c(mpg, wt): tibble [8 × 2] (S3: tbl_df/tbl/data.frame)
..$ mpg: num [1:8] 21.5 26.9 28.2 19.8 19.8 ...
..$ wt : num [1:8] 2.46 2.38 1.83 3.34 3.09 ...
- attr(*, "groups")= tibble [3 × 2] (S3: tbl_df/tbl/data.frame)
..$ cyl : num [1:3] 4 6 8
..$ .rows: list<int> [1:3]
.. ..$ : int [1:3] 1 2 3
.. ..$ : int [1:3] 4 5 6
.. ..$ : int [1:2] 7 8
.. ..@ ptype: int(0)
..- attr(*, ".drop")= logi TRUE
> mean_fun_multicols(mtcars, c(cyl, gear), c(mpg, wt)) %>%
unpack(where(is_tibble))
`summarise()` has grouped output by 'cyl'. You can override using the `.groups` argument.
# A tibble: 8 × 4
# Groups: cyl [3]
cyl gear mpg wt
<dbl> <dbl> <dbl> <dbl>
1 4 3 21.5 2.46
2 4 4 26.9 2.38
3 4 5 28.2 1.83
4 6 3 19.8 3.34
5 6 4 19.8 3.09
6 6 5 19.7 2.77
7 8 3 15.0 4.10
8 8 5 15.4 3.37
Upvotes: 2