Reputation: 897
Have been researching this question on SO, and found only solutions for merging list elements into one large data frame. However, I am struggling with unpacking only those elements that meet certain condition.
df1 <- iris %>% filter(Sepal.Length > 2.5)
df2 <- mtcars %>% filter(qsec > 16)
not_neccessary <- head(diamonds, 10)
not_neccessary2 <- head(beaver1, 12)
data_lists <- list("#123 DATA" = df1, "CON" = not_neccessary2, "#432 DATA" = df2, "COM" = not_neccessary)
My goal is to convert only those list elements that contain "DATA" in their name. I was thinking about writing a loop function within a lapply
:
a <- lapply(data_lists, function(x){if (x == "#+[1-9]+_+DATA"){new_df <- as.data.frame(x)}})
It does not work. Also was trying to make a for
loop:
for (i in list){
if (i == "#+[1-9]+_+DATA"){
df <- i
}
}
It does not work neither.
Is there any effective function that will unpack my list into particular dataframes by certain condition? My R skills are very bad, especially in writing functions, although I am not really new to this language. Sorry about that.
Upvotes: 1
Views: 39
Reputation: 887148
Using %like%
result <- data_lists[names(data_lists) %like% 'DATA']
Upvotes: 1
Reputation: 388982
Use grepl
/grep
to find lists that have 'DATA' in their name and subset the list.
result <- data_lists[grepl('DATA', names(data_lists))]
#With `grep`
#result <- data_lists[grep('DATA', names(data_lists))]
Upvotes: 1