Reputation: 43209
I have a dataframe
of which one field comprises lists of varying lengths. I would like to extract each element of the list in this field to its own field so that I can gather the results into a long dataframe
with each list element per id.
Here is an example dataframe
dat <- structure(list(id = c("509935", "727889", "864607", "1234243",
"1020959", "221975"), some_date = c("2/09/1967", "28/04/1976",
"22/12/2017", "7/02/2006", "10/03/2019", "21/10/1935"), df_list = list(
"018084131", c("062197171", "062171593"), c("064601923",
"068994009", "069831651"), c("071141584", "073129537"), c("061498574",
"065859718", "067251995", "069447806"), "064623976")), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -6L))
I have come with code to achieve what I want the final result to look like, however, I have not done this the DRY way. Here is what I have tried.
res_n
is a function as follows:
res_n <- function(field, n) {
field[n]
}
dat <- dat %>% mutate(res1 = map(df_list, res_n, 1))
dat <- dat %>% mutate(res2 = map(df_list, res_n, 2))
dat <- dat %>% mutate(res3 = map(df_list, res_n, 3))
This returns a data frame with each of the three list elements from df_list
in their own columns.
From this I can achieve what I set out to do and produce a final dataframe
of results, as follows:
dat_final <- gather(dat, test, labno, -df_list, -some_date, -id) %>%
select(-df_list) %>%
mutate(labno = as.integer(labno)) %>%
filter(!is.na(labno))
To avoid the DRY approach I used I resorted to a for loop to try and eliminate the repetitive code. I'm struggling to get this to work in the way I need to achieve the final result. This is the for loop I tried.
for (i in 3) {
dat %>% mutate(paste(res, i, sep = '_') = map(results, res_n, i)) }
Can someone help me to refine the code to elimiate the repeitive lines that produce the result.
Upvotes: 3
Views: 3272
Reputation: 887128
Instead of using repeated map
, we can make use of unnest_wider
library(dplyr)
library(tidyr)
library(stringr)
out <- dat %>%
unnest_wider(df_list, names_repair = ~
str_remove(str_c("res", .x), "[.]+"))
out
# A tibble: 6 x 6
# id some_date res1 res2 res3 res4
# <chr> <chr> <chr> <chr> <chr> <chr>
#1 509935 2/09/1967 018084131 <NA> <NA> <NA>
#2 727889 28/04/1976 062197171 062171593 <NA> <NA>
#3 864607 22/12/2017 064601923 068994009 069831651 <NA>
#4 1234243 7/02/2006 071141584 073129537 <NA> <NA>
#5 1020959 10/03/2019 061498574 065859718 067251995 069447806
#6 221975 21/10/1935 064623976 <NA> <NA> <NA>
EDIT: Based on @Phil's comments
Now, reshape to 'long' with pivot_longer
out %>%
pivot_longer(cols = starts_with('res'), values_drop_na = TRUE) %>%
mutate(value = as.integer(value))
# A tibble: 13 x 4
# id some_date name value
# <chr> <chr> <chr> <int>
# 1 509935 2/09/1967 res1 18084131
# 2 727889 28/04/1976 res1 62197171
# 3 727889 28/04/1976 res2 62171593
# 4 864607 22/12/2017 res1 64601923
# 5 864607 22/12/2017 res2 68994009
# 6 864607 22/12/2017 res3 69831651
# 7 1234243 7/02/2006 res1 71141584
# 8 1234243 7/02/2006 res2 73129537
# 9 1020959 10/03/2019 res1 61498574
#10 1020959 10/03/2019 res2 65859718
#11 1020959 10/03/2019 res3 67251995
#12 1020959 10/03/2019 res4 69447806
#13 221975 21/10/1935 res1 64623976
NOTE: If we check ?unnest
, it says the lifecycle as deprecated
nest(.data, ..., .key = deprecated())
unnest(data, cols, ..., keep_empty = FALSE, ptype = NULL, names_sep = NULL, names_repair = "check_unique", .drop = deprecated(), .id = deprecated(), .sep = deprecated(), .preserve = deprecated())
and in ?hoist
description is
hoist(), unnest_longer(), and unnest_wider() provide tools for rectangling, collapsing deeply nested lists into regular columns.
Also, if the intention is not to get the intermediate wide format, just use unnest_longer
dat %>%
unnest_longer(df_list)
# A tibble: 13 x 3
# id some_date df_list
# <chr> <chr> <chr>
# 1 509935 2/09/1967 018084131
# 2 727889 28/04/1976 062197171
# 3 727889 28/04/1976 062171593
# 4 864607 22/12/2017 064601923
# 5 864607 22/12/2017 068994009
# 6 864607 22/12/2017 069831651
# 7 1234243 7/02/2006 071141584
# 8 1234243 7/02/2006 073129537
# 9 1020959 10/03/2019 061498574
#10 1020959 10/03/2019 065859718
#11 1020959 10/03/2019 067251995
#12 1020959 10/03/2019 069447806
#13 221975 21/10/1935 064623976
Or using base R
merge(setNames(stack(setNames(dat$df_list, dat$id))[2:1],
c("id", "values")), dat[-3])
Upvotes: 5
Reputation: 5788
Base R solution:
# Split, Apply, Combine Base R:
# Split the data frame on ids, unlist the dataframe list, replicated the id,
# the number of times as there are elements in the unlisted df list - store
# as a dataframe, left join back to the original data.frame,
# (dropping the df_list vector) using the ID vector, row bind the id data.frames
# back together and store it as a dataframe:
data.frame(do.call("rbind", lapply(split(df, df$id), function(x){
unlisted_df_list <- unlist(x$df_list)
rolled_out_df <- data.frame(id = rep(x$id, length(unlisted_df_list)),
df_list = unlisted_df_list, stringsAsFactors = F)
x <- merge(x[,names(x) != "df_list"], rolled_out_df, by = "id", all.x = T)
}
)
),
row.names = NULL
)
Upvotes: 1
Reputation: 388982
If the final goal is to get data in long format, we can use unnest
from tidyr
tidyr::unnest(dat, cols = df_list)
# id some_date df_list
# <chr> <chr> <chr>
# 1 509935 2/09/1967 018084131
# 2 727889 28/04/1976 062197171
# 3 727889 28/04/1976 062171593
# 4 864607 22/12/2017 064601923
# 5 864607 22/12/2017 068994009
# 6 864607 22/12/2017 069831651
# 7 1234243 7/02/2006 071141584
# 8 1234243 7/02/2006 073129537
# 9 1020959 10/03/2019 061498574
#10 1020959 10/03/2019 065859718
#11 1020959 10/03/2019 067251995
#12 1020959 10/03/2019 069447806
#13 221975 21/10/1935 064623976
Upvotes: 3