Reputation: 905
I am trying to read a nested JSON using json_normalize
method of Pandas. I am trying to use one of the fields as the record_path
. I have also included the errors = 'ignore'
to ignore any errors due to missing key. Can you please help me with what am I doing wrong here?
Here is the JSON -
{
"_id" : "31aa9894-6a43-40f9-8911-116c14c42636",
"message" : {
"serviceOperationName" : "/logUserEvents/event",
"accountNumber" : "1234",
"userId" : null,
"market" : null,
"extract" : {
"request" : {
"USER_EVENT_LOGGING" : {
"payload" : [
{
"eventType" : "audibleSummaryUsage",
"ntid" : "abc",
"accountNumber" : "Not Found",
"workOrderNumber" : "",
"data" : [
{
"name" : "userAction",
"value" : "DISMISSED"
},
{
"name" : "employeeTenure",
"value" : "3.9"
},
{
"name" : "ffc",
"value" : "1234"
},
{
"name" : "ntid",
"value" : "abcd"
},
{
"name" : "isAccountView",
"value" : "true"
},
{
"name" : "userAction",
"value" : "DISMISSED"
},
{
"name" : "title",
"value" : "abcd"
},
{
"name" : "jobType",
"value" : ""
},
{
"name" : "jobClassCd",
"value" : ""
}
]
}
]
}
},
"response" : {}
},
"@timestamp" : "2021-02-18T05:38:48.00269Z",
"eventKeys" : [
"USER_EVENT_LOGGING"
],
"requestStartTimestampText" : "2021-02-18T05:38:48.268Z"
},
"createdOn" : ISODate("2021-02-18T05:38:48.269Z")
}
/* 2 */
{
"_id" : "4189da82-299d-4a9e-8f10-ddb5da9b97b5",
"message" : {
"serviceOperationName" : "/logUserEvents/event",
"accountNumber" : "7890",
"userId" : null,
"market" : null,
"extract" : {
"request" : {
"USER_EVENT_LOGGING" : {
"payload" : [
{
"eventType" : "audibleSummaryUsage",
"ntid" : "defg",
"accountNumber" : "Not Found",
"workOrderNumber" : "",
"data" : [
{
"name" : "userAction",
"value" : "DISMISSED"
},
{
"name" : "userAction",
"value" : "DISMISSED"
},
{
"name" : "employeeTenure",
"value" : "3.9"
},
{
"name" : "jobType",
"value" : ""
},
{
"name" : "jobClassCd",
"value" : ""
},
{
"name" : "ntid",
"value" : "dfer"
},
{
"name" : "ffc",
"value" : "3456"
},
{
"name" : "title",
"value" : "erty"
},
{
"name" : "isAccountView",
"value" : "true"
}
]
}
]
}
},
"response" : {}
},
"@timestamp" : "2021-02-18T05:39:11.00659Z",
"eventKeys" : [
"USER_EVENT_LOGGING"
],
"requestStartTimestampText" : "2021-02-18T05:39:11.658Z"
},
"createdOn" : ISODate("2021-02-18T05:39:11.659Z")
}
Here is the code -
db = mongo_client.conciselogs
col = db.logs
cursor = col.find({"message.extract.request.USER_EVENT_LOGGING.payload.eventType":"audibleSummaryUsage"})
mongo_docs = list(cursor)
df = pd.json_normalize(mongo_docs, ['message.extract.request.USER_EVENT_LOGGING.payload.data'], errors = 'ignore')
df.to_csv('sample_data0220_3.csv', index=False)```
Upvotes: 1
Views: 271
Reputation: 2226
Your record_path
argument is incorrect, it should be a list:
df = pd.json_normalize(
mongo_docs,
['message', 'extract', 'request', 'USER_EVENT_LOGGING', 'payload', 'data'], # list, not 'key.key.key'
errors='ignore',
)
df.to_csv('sample_data0220_3.csv', index=False)
Output:
name,value
userAction,DISMISSED
employeeTenure,3.9
ffc,1234
ntid,abcd
isAccountView,true
userAction,DISMISSED
title,abcd
jobType,
jobClassCd,
userAction,DISMISSED
userAction,DISMISSED
employeeTenure,3.9
jobType,
jobClassCd,
ntid,dfer
ffc,3456
title,erty
isAccountView,true
Upvotes: 1