Reputation: 17
I have the following code, I need to remove some layers of the model and perform prediction. But currently I am retrieving error.
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
from keras.models import Model
from tensorflow.python.keras.optimizers import SGD
base_model = ResNet50(include_top=False, weights='imagenet')
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
#model = Model(inputs=base_model.input, outputs=predictions)
#Compiling the model
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics =
['accuracy'])
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
#decode the results into a list of tuples (class, description, probability)
#(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
error
File "C:/Users/learn/remove_layer.py", line 9, in <module>
model= Model(inputs=base_model.input, outputs=base_model .layers[-2].output)
AttributeError: 'Tensor' object has no attribute '_keras_shape'
Due to my beginner's knowledge in Keras what I understood is the shape issue. Since its a resnet model, if I remove a layer from one merge to another merge layer, because merge layer doesn't have dimension issues, how can I accomplish this?
Upvotes: 0
Views: 519
Reputation: 2086
You actually need to visualize what you have done, so lets do little summary for last layers of ResNet50 Model:
base_model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_out (Activation) (None, None, None, 2 0 conv5_block3_add[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
_____________________________
And now your model after removing last layer
model.summary()
conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
==================================================================================================
Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120
Reset50 in keras output is all the feature map after the last Conv2D blocks it doesn't care about the classfication part of your model, what you actualy did is that you just removed the last activation layer after the last addition block
So you need check more which block layer you wanna remove and add flatten and fully connected layer for the classfication part
Also as mentioned by Dr.Snoopy, dont mix imports between keras and tensorflow.keras
# this part
from tensorflow.keras.models import Model
Upvotes: 1