Reputation: 908
Is there a way to load a pretrained model in Tensorflow and remove the top layers in the network? I am looking at Tensorflow release r1.10
The only documentation I could find is with tf.keras.Sequential.pop
https://www.tensorflow.org/versions/r1.10/api_docs/python/tf/keras/Sequential#pop
I want to manually prune a pretrained network by removing bunch of top convolution layers and add a custom fully convoluted layer.
EDIT:
The model is ssd_mobilenet_v1_coco downloaded from Tensorflow Model Zoo. I have access to both the frozen_inference_graph.pb model file and checkpoint file.
I donot have access to the python code which is used to construct the model.
Thanks.
Upvotes: 1
Views: 3404
Reputation: 4183
From inspecting the code, SSDMobileNetV1FeatureExtractor.extract_features
redirects research.slim.nets
:
from nets import mobilenet_v1 # nets will have to be on your PYTHONPATH
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
The mobilenet_v1_base
function takes a final_endpoint
argument. Rather than prune the constructed graph, just construct the graph up until the endpoint you want.
Upvotes: 1