Reputation: 51
Essentially, I want to perform pruning to my transfer learning model.
I used efficientnetb0
for classifying microorganisms.
import tensorflow_model_optimization as tfmot
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
# Compute end step to finish pruning after 2 epochs.
batch_size = 32
epochs = 25
end_step = np.ceil(len(training_set) / batch_size).astype(np.int32) * epochs
# Define model for pruning.
pruning_params = {
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(
initial_sparsity = 0.40,
final_sparsity = 0.90,
begin_step = 0,
end_step = end_step
)
}
model_for_pruning = prune_low_magnitude(
efficientnetb0_transfer_model, **pruning_params)
# `prune_low_magnitude` requires a recompile.
efficientnetb0_transfer_model_for_pruning.compile(optimizer=optim,
loss='categorical_crossentropy',
metrics=['accuracy'])
efficientnetb0_transfer_model_for_pruning.summary()
However, I'm getting the following error:
ValueError: Please initialize `Prune` with a supported layer. Layers should either be supported by the PruneRegistry (built-in keras layers) or should be a `PrunableLayer` instance, or should has a customer defined `get_prunable_weights` method. You passed: <class 'tensorflow.python.keras.layers.preprocessing.image_preprocessing.Rescaling'>
What could I be doing wrong?
Upvotes: 0
Views: 448