Reputation: 819
I'm wondering if there's a way I can find the range of local maxima of a histogram. For instance, suppose I have the following histogram (just ignore the orange curve):
The histogram is actually obtained from a dictionary. I'm hoping to find the range of local maxima of this histogram (on the horizontal axis), which are, say, 1.3-1.6, and 2.1-2.4 in this case. I have no idea which tools would be helpful or which techniques I may want to use. I know there's a tool to find local maxima of a 1-D array:
from scipy.signal import argrelextrema
x = np.random.random(12)
argrelextrema(x, np.greater)
but I don't think it would work here since I'm looking for a range, and there're some 'wiggles' on the histogram. Can anyone give me some suggestions/examples about how I can obtain the range I'm looking for? Thanks a lot for the help
PS: I trying to not just search for the ranges of x whose y values are above a certain limit:)
Upvotes: 2
Views: 2356
Reputation: 2249
I don't know if I correctly understand what you want to do, but you can treat the histogram as a Probability Density Function (PDF) of a bimodal distribution, then find the modes and the Highest Density Intervals (HDIs) around the two modes.
So, I create some sample data
import numpy as np
import pandas as pd
import scipy.stats as sps
from scipy.signal import find_peaks, argrelextrema
import matplotlib.pyplot as plt
d1 = sps.norm(loc=1.3, scale=.2)
d2 = sps.norm(loc=2.2, scale=.3)
r1 = d1.rvs(size=5000, random_state=1)
r2 = d2.rvs(size=5000, random_state=1)
r = np.concatenate((r1, r2))
h = plt.hist(r, bins=100, density=True);
We have only h
, the result of the hist
function that will contains the density (100) and the ranges of the bins (101).
print(h[0].size)
100
print(h[1].size)
101
So we first need to choose the mean of each bin
density = h[0]
values = h[1][:-1] + np.diff(h[1])[0] / 2
plt.hist(r, bins=100, density=True, alpha=.25)
plt.plot(values, density);
Now we can normalize the PDF (to sum to 1) and smooth the data with moving average that we'll use only to get the peaks (maxima) and minima
norm_density = density / density.sum()
norm_density_ma = pd.Series(norm_density).rolling(7, center=True).mean().values
plt.plot(values, norm_density_ma)
plt.plot(values, norm_density);
Now we can obtain indexes of maxima
peaks = find_peaks(norm_density_ma)[0]
peaks
array([24, 57])
and minima
minima = argrelextrema(norm_density_ma, np.less)[0]
minima
array([40])
and check they're correct
plt.plot(values, norm_density_ma)
plt.plot(values, norm_density)
for peak in peaks:
plt.axvline(values[peak], color='r')
plt.axvline(values[minima], color='k', ls='--');
Finally, we have to find out the HDIs around the two modes (peaks) from the normalized h
histogram data. We can use a simple function to get the HDI of grid (see HDI_of_grid for details and Doing Bayesian Data Analysis by John K. Kruschke)
def HDI_of_grid(probMassVec, credMass=0.95):
sortedProbMass = np.sort(probMassVec, axis=None)[::-1]
HDIheightIdx = np.min(np.where(np.cumsum(sortedProbMass) >= credMass))
HDIheight = sortedProbMass[HDIheightIdx]
HDImass = np.sum(probMassVec[probMassVec >= HDIheight])
idx = np.where(probMassVec >= HDIheight)[0]
return {'indexes':idx, 'mass':HDImass, 'height':HDIheight}
Let's say we want the HDIs to contain a mass of 0.3
# HDI around the 1st mode
hdi1 = HDI_of_grid(norm_density, credMass=.3)
plt.plot(values, norm_density_ma)
plt.plot(values, norm_density)
plt.fill_between(
values[hdi1['indexes']],
0, norm_density[hdi1['indexes']],
alpha=.25
)
for peak in peaks:
plt.axvline(values[peak], color='r')
for the 2nd mode, we'll get HDI from minima
to avoid the 1st mode
# HDI around the 2nd mode
hdi2 = HDI_of_grid(norm_density[minima[0]:], credMass=.3)
plt.plot(values, norm_density_ma)
plt.plot(values, norm_density)
plt.fill_between(
values[hdi1['indexes']],
0, norm_density[hdi1['indexes']],
alpha=.25
)
plt.fill_between(
values[hdi2['indexes']+minima],
0, norm_density[hdi2['indexes']+minima],
alpha=.25
)
for peak in peaks:
plt.axvline(values[peak], color='r')
And we have the values of the two HDIs
# 1st mode
values[peaks[0]]
1.320249129265321
# 0.3 HDI
values[hdi1['indexes']].take([0, -1])
array([1.12857599, 1.45715851])
# 2nd mode
values[peaks[1]]
2.2238510564735363
# 0.3 HDI
values[hdi2['indexes']+minima].take([0, -1])
array([1.95003229, 2.47028795])
Upvotes: 6