Reputation: 9
I am doing forecasting of electrical power output, I have different sets of data that varies from 200-4000 observations. I have calculated forecasting but I do not know how to calculate RMSE value and R (correlation coefficient) in R. I tried to calculate it on excel and the result for rmse was 0.0078. so I have basically two questions here.
Upvotes: 0
Views: 1906
Reputation: 76402
Here are two functions, one to compute the MSE and the second calls the first one and takes the squre root, RMSE.
These functions accept a fitted model, not a data set. For instance the output of lm
, glm
, and many others.
mse <- function(x, na.rm = TRUE, ...){
e <- resid(x)
mean(e^2, na.rm = TRUE)
}
rmse <- function(x, ...) sqrt(mse(x, ...))
Like I said in a comment to the question, a value is not good on its own, it's good when compared to others obtained from other fitted models.
Upvotes: 1
Reputation: 162
Root Mean Square Error (RMSE) is the standard deviation of the prediction errors. prediction errors are a measure of how far from the regression line data points are; RMSE is a measure of how spread out these residuals are. In other words, it tells you how concentrated the data is around the line of best fit. Root mean square error is commonly used in climatology, forecasting, and regression analysis to verify experimental results.
f = forecasts (expected values or unknown results),
o = observed values (known results).
The bar above the squared differences is the mean (similar to x̄). The same formula can be written with the following, slightly different, notation:
Where:
Σ = summation (“add up”)
(zfi – Zoi)2 = differences, squared
N = sample size.
You can use which ever method you want as both reflects the same and "R" that you are refering to is pearson coefficient that defines the variance amount in the data
Coming to Question2 a good rmse value is always depends on the upper and lower bound of your rmse and a good value should always be smaller that gives less probe of error
Upvotes: 0