Reputation: 461
i have data look like this
data={"col1":[ [(1,22),(1.5,20),(3,32),(2,21)],
[(2,24),(2.5,22)],
[(6,12),(1.3,18),(5,21)],
[(4,25),(5,33),(7,21),(2,30)]],
"name":["A","B","C","F"]}
df=pd.DataFrame.from_dict(data)
print(df)
I will like to mean the first and the sec numbers in every row (list) two difrent colls so for the first cell i will get new coll that contain (1+1.5+3+2)\4 and one more col that have 22+20+32+21/4
i do somthing like that but its look messy with the loops
for i in df["col1"]:
mean_list = []
for first_numb in i:
mean_list.append(first_numb[0])
any idea?
Upvotes: 4
Views: 1107
Reputation: 71689
We can try exploding
and creating a new dataframe from the exploded column then calculating mean
on level=0
e = df['col1'].explode()
df[['m1', 'm2']] = pd.DataFrame([*e], index=e.index).mean(level=0)
Alternate approach with list
comprehension
df[['m1', 'm2']] = pd.DataFrame([[sum(t) / len(t) for t in zip(*l)]
for l in df['col1']], index=df.index)
col1 name m1 m2
0 [(1, 22), (1.5, 20), (3, 32), (2, 21)] A 1.875 23.75
1 [(2, 24), (2.5, 22)] B 2.250 23.00
2 [(6, 12), (1.3, 18), (5, 21)] C 4.100 17.00
3 [(4, 25), (5, 33), (7, 21), (2, 30)] F 4.500 27.25
Performance checks
# Sample df with 40000 rows
df = pd.concat([df] * 10000, ignore_index=True)
%%timeit
e = df['col1'].explode()
pd.DataFrame([*e], index=e.index).mean(level=0)
# 107 ms ± 1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%%timeit
pd.DataFrame([[sum(t) / len(t) for t in zip(*l)] for l in df['col1']], index=df.index)
# 50.5 ms ± 582 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Upvotes: 5