Reputation: 22274
Please explain what is index depth of tf.tensor_scatter_nd_update.
tf.tensor_scatter_nd_update(
tensor, indices, updates, name=None
)
Why indices is 2D for 1D tensor?
indices has at least two axes, the last axis is the depth of the index vectors. For a higher rank input tensor scalar updates can be inserted by using an index_depth that matches tf.rank(tensor):
tensor = [0, 0, 0, 0, 0, 0, 0, 0] # tf.rank(tensor) == 1
indices = [[1], [3], [4], [7]] # num_updates == 4, index_depth == 1 # <--- what is depth and why 2D for 1D tensor?
updates = [9, 10, 11, 12] # num_updates == 4
print(tf.tensor_scatter_nd_update(tensor, indices, updates))
tensor = [[1, 1], [1, 1], [1, 1]] # tf.rank(tensor) == 2
indices = [[0, 1], [2, 0]] # num_updates == 2, index_depth == 2
updates = [5, 10] # num_updates == 2
print(tf.tensor_scatter_nd_update(tensor, indices, updates))
Upvotes: 3
Views: 675
Reputation: 17229
For indices
, the index depth
is the size or length of the index vectors. For example:
indicesA = [[1], [3], [4], [7]] # index vector with 1 element: index_depth = 1
indicesB = [[0, 1], [2, 0]] # index vector with 2 element: index_depth = 2
The reason for indices is 2D
is to hold two information, one is the length of the updates (num_updates
) and the length of the index vector. Two things need to be fulfilled:
index depth
of indices
must equal the rank of the input
tensorupdates
must equal the length of the indices
So, in the example code
# tf.rank(tensor) == 1
tensor = [0, 0, 0, 0, 0, 0, 0, 0]
# num_updates == 4, index_depth == 1 | tf.rank(indices).numpy() == 2
indices = [[1], [3], [4], [7]]
# num_updates == 4 | tf.rank(output).numpy() == 1
updates = [9, 10, 11, 12]
output = tf.tensor_scatter_nd_update(tensor, indices, updates)
tf.Tensor([ 0 9 0 10 11 0 0 12], shape=(8,), dtype=int32)
Also
# tf.rank(tensor) == 2
tensor = [[1, 1], [1, 1], [1, 1]]
# num_updates == 2, index_depth == 2 | tf.rank(indices).numpy() == 2
indices = [[0, 1], [2, 0]]
# num_updates == 2 | tf.rank(output).numpy() == 2
updates = [5, 10]
output = tf.tensor_scatter_nd_update(tensor, indices, updates)
tf.Tensor(
[[ 1 5]
[ 1 1]
[10 1]], shape=(3, 2), dtype=int32)
num_updates, index_depth = tf.convert_to_tensor(indices).shape.as_list()
[num_updates, index_depth]
[2, 2]
Upvotes: 1