Reputation: 4490
Trying to apply numpy
inbuilt function apply_along_axis
based on row index position
import numpy as np
sa = np.array(np.arange(4))
sa_changed = (np.repeat(sa.reshape(1,len(sa)),repeats=2,axis=0))
print (sa_changed)
OP:
[[0 1 2 3]
[0 1 2 3]]
The function:
np.apply_along_axis(lambda x: x+10,0,sa_changed)
Op:
array([[10, 11, 12, 13],
[10, 11, 12, 13]])
But is there a way to use this function based on row index position
for example, if its a even row index
then add 10
and if its a odd row index
then add 50
Sample:
def func(x):
if x.index//2==0:
x = x+10
else:
x = x+50
return x
Upvotes: 1
Views: 832
Reputation: 2465
here's one way to do this
import numpy as np
x = np.array([[0, 1, 2, 3],
[0, 1, 2, 3]])
y = x.copy() # if you dont wish to modify x
for even row index
y[::2] = y[::2] + 10
and for odd row index
y[1::2] = y[1::2] + 50
output :
array([[10, 11, 12, 13],
[50, 51, 52, 53]])
Upvotes: 1
Reputation: 231385
When iterating on array, directly or with apply_along_axis
, the subarray does not have a .index
attribute. So we have to pass an explicit index value to your function:
In [248]: def func(i,x):
...: if i//2==0:
...: x = x+10
...: else:
...: x = x+50
...: return x
...:
In [249]: arr = np.arange(10).reshape(5,2)
apply
doesn't have a way to add this index, so instead we have to use an explicit iteration.
In [250]: np.array([func(i,v) for i,v in enumerate(arr)])
Out[250]:
array([[10, 11],
[12, 13],
[54, 55],
[56, 57],
[58, 59]])
replacing // with %
In [251]: def func(i,x):
...: if i%2==0:
...: x = x+10
...: else:
...: x = x+50
...: return x
...:
In [252]: np.array([func(i,v) for i,v in enumerate(arr)])
Out[252]:
array([[10, 11],
[52, 53],
[14, 15],
[56, 57],
[18, 19]])
But a better way is to skip the iteration entirely:
Make an array of the row additions:
In [253]: np.where(np.arange(5)%2,10,50)
Out[253]: array([50, 10, 50, 10, 50])
apply it via broadcasting
:
In [256]: x+np.where(np.arange(5)%2,50,10)[:,None]
Out[256]:
array([[10, 11],
[52, 53],
[14, 15],
[56, 57],
[18, 19]])
Upvotes: 1