Reputation: 838
I read this 16-bit value from a temperature sensor (type MCP9808)
Ignoring the first three MSBs, what's an easy way to convert the other bits to a float? I managed to convert the values 2^7 through 2^0 to an integer with some bit-shifting:
uint16_t rawBits = readSensor();
int16_t value = (rawBits << 3) / 128;
However I can't think of an easy way to also include the bits with an exponent smaller than 0, except for manually checking if they're set and then adding 1/2, 1/4, 1/8 and 1/16 to the result respectively.
Upvotes: 2
Views: 664
Reputation: 2562
If your C compiler has a clz
buitlin or equivalent, it could be useful to avoid mul
operation.
In your case, as the provided temp value looks like a mantissa and if your C compiler uses IEEE-754 float representation, translating the temp value in its IEEE-754 equivalent may be a most efficient way :
Update: Compact the code a little and more clear explanation about the mantissa.
float convert(uint16_t val) {
uint16_t mantissa = (uint16_t)(val <<4);
if (mantissa==0) return 0.0;
unsigned char e = (unsigned char)(__builtin_clz(mantissa) - 16);
uint32_t r = (uint32_t)((val & 0x1000) << 19 | (0x86 - e) << 23 | ((mantissa << (e+8)) & 0x07FFFFF));
return *((float *)(&r));
}
or
float convert(unsigned char msb, unsigned char lsb) {
uint16_t mantissa = (uint16_t)((msb<<8 | lsb) <<4);
if (mantissa==0) return 0.0;
unsigned char e = (unsigned char)(__builtin_clz(mantissa) - 16);
uint32_t r = (uint32_t)((msb & 0x10) << 27 | (0x86 - e) << 23 | ((mantissa << (e+8)) & 0x07FFFFF));
return *((float *)(&r));
}
Explanation:
We use the fact that the temp value is somehow a mantissa in the range -255 to 255.
We can then consider that its IEEE-754 exponent will be 128 at max to -128 at min.
We use the clz
buitlin to get the "order" of the first bit set in the mantissa,
this way we can define the exponent as the therorical max (2^7 =>128) less this "order".
We use also this order to left shift the temp value to get the IEEE-754 mantissa,
plus one left shift to substract the '1' implied part of the significand for IEEE-754.
Thus we build a 32 bits binary IEEE-754 representation from the temp value with :
mantissa
through the clz
builtin.
Beware that here we consider that the clz
builtin is expecting a 32 bit value as parameter, that is why we substract 16 here. This code may require adaptation if your clz
expects anything else.
The number of leading '0' can go from 0 (temp value above 128 or under -127) to 11 as we directly return 0.0 for a zero temp value.
As the following bit of the "order" is then 1 in the temp value, it is equivalent to a power of 2 reduction from the theorical max 7.
Thus, with 7 + 127 => 0x86, we can simply substract to that the "order" as the number of leading '0' permits us to deduce the 'first' base exponent for IEEE-754.
If the "order" is greater than 7 we will still get the negative exponent required for less than 1 values.
We add then this 8bits exponent to our binary IEEE-754 representation from 24th bit to 31th bit.|
) on a 32 bits exponent and mantissa, we have then the final IEEE-754 representation.Due to the required clz
and the IEEE-754 translation, this way is less portable. The main interest is to avoid MUL
operations in the resulting machine code for performance on arch with a "poor" FPU.
P.S.: Casts explanation. I've added explicit casts to let the C compiler know that we discard voluntary some bits :
uint16_t mantissa = (uint16_t)(val <<4);
: The cast here tells the compiler that we know we'll "loose" four left bits, as it the goal here. We discard the four first bits of the temp value for the mantissa.(unsigned char)(__builtin_clz(mantissa) - 16)
: We tell to the C compiler that we will only consider a 8 bits range for the builtin return, as we know our mantissa has only 12 significatives bits and thus a range output from 0 to 12. Thus we do not need the full int
return.uint32_t r = (uint32_t) ...
: We tell the C compiler to not bother with the sign representation here as we build an IEEE-754 representation.Upvotes: 0
Reputation: 63271
If performance isn't a super big deal, I would go for something less clever and more explcit, along the lines of:
bool is_bit_set(uint16_t value, uint16_t bit) {
uint16_t mask = 1 << bit;
return (value & mask) == mask;
}
float parse_temperature(uint16_t raw_reading) {
if (is_bit_set(raw_reading, 15)) { /* temp is above Tcrit. Do something about it. */ }
if (is_bit_set(raw_reading, 14)) { /* temp is above Tupper. Do something about it. */ }
if (is_bit_set(raw_reading, 13)) { /* temp is above Tlower. Do something about it. */ }
uint16_t whole_degrees = (raw_reading & 0x0FF0) >> 4;
float magnitude = (float) whole_degrees;
if (is_bit_set(raw_reading, 0)) magnitude += 1.0f/16.0f;
if (is_bit_set(raw_reading, 1)) magnitude += 1.0f/8.0f;
if (is_bit_set(raw_reading, 2)) magnitude += 1.0f/4.0f;
if (is_bit_set(raw_reading, 3)) magnitude += 1.0f/2.0f;
bool is_negative = is_bit_set(raw_reading, 12);
// TODO: What do the 3 most significant bits do?
return magnitude * (is_negative ? -1.0 : 1.0);
}
Honestly this is a lot of simple constant math, I'd be surprised if the compiler wasn't able to heavily optimize it. That would need confirmation, of course.
Upvotes: 0
Reputation: 67546
float convert(unsigned char msb, unsigned char lsb)
{
return ((lsb | ((msb & 0x0f) << 8)) * ((msb & 0x10) ? -1 : 1)) / 16.0f;
}
or
float convert(uint16_t val)
{
return (((val & 0x1000) ? -1 : 1) * (val << 4)) / 256.0f;
}
Upvotes: 2
Reputation: 81936
Something like this seems pretty reasonable. Take the number portion, divide by 16, and fix the sign.
float tempSensor(uint16_t value) {
bool negative = (value & 0x1000);
return (negative ? -1 : 1) * (value & 0x0FFF) / 16.0f;
}
Upvotes: 4