Reputation: 1
it is my first time posting but I'll start by apologizing in advance if this question has been asked before.
I have been struggling on how to implement a 3rd order polynomial formula in C because of either extremely small values or larger than 32bit results (on a 16bit MCU). I use diffrent values but as an example I would like to compute for "Y" in formula:
Y = ax^3 + bx^2 + cx + d = 0.00000012*(1024^3) + 0.000034*(1024^2) + 0.056*(1024) + 789.10
I need to use a base32 to get a meaningful value for "a" = 515 If I multiply 1024^3 (10bit ADC) then I get a very large amount of 1,073,741,824
I tried splitting them up into "terms A, B, C, and D" but I am not sure how to merge them together because of different resolution of each term and limitation of my 16bit MCU:
u16_TermA = fnBase32(0.00000012) * AdcMax * AdcMax * AdcMax;
u16_TermB = fnBase24(0.000034) * AdcMax * AdcMax;
u16_TermC = fnBase16(0.056) * AdcMax;
u16_TermD = fnBase04(789.10);
u16_Y = u16_TermA + u16_TermB + u16_TermC + u16_TermD;
/* AdcMax is a variable 0-1024; u16_Y needs to be 16bit */
I'd appreciate any help on the matter and on how best to implement this style of computations in C.
Cheers and thanks in advance!
Upvotes: 0
Views: 627
Reputation: 153498
One step toward improvement:
ax^3 + bx^2 + cx + d --> ((a*x + b)*x + c)*x + d
It is numerically more stable and tends to provide more accurate answers near the zeros of the function and less likely to overflow intermediate calculations.
2nd idea; consider scaling the co-efficents if they maintain their approximate relative values as given on the question.
N = 1024; // Some power of 2
aa = a*N*N*N
bb = b*N*N
cc = c*N
y = ((aa*x/N + bb)*x/N + cc)*x/N + d
where /N
is done quickly with a shift.
With a judicious selection of N
(maybe 2**14 for high precision avoid 32-bit overflow), then entire code might be satisfactorily done using only integer math.
As aa*x/N
is just a*x*N*N
, I think a scale of 2**16 works well.
Third idea:
In addition to scaling, often such cubic equations can be re-written as
// alpha is a power of 2
y = (x-root1)*(x-root2)*(x-root3)*scale/alpha
Rather than a,b,c
, use the roots of the equation. This is very satisfactory if the genesis of the equation was some sort of curve fitting.
Unfortunately, OP's equation roots has a complex root pair.
x1 = -1885.50539
x2 = 801.08603 + i * 1686.95936
x3 = 801.08603 - i * 1686.95936
... in which case code could use
B = -(x1 + x2);
C = x1 * x2;
y = (x-x1)*(x*x + B*x + C)*scale/alpha
Upvotes: 4