Reputation: 4842
I have a dataframe:
df_full = pd.DataFrame.from_dict({('group', ''): {0: 'A',
1: 'A',
2: 'A',
3: 'A',
4: 'A',
5: 'A',
6: 'A',
7: 'B',
8: 'B',
9: 'B',
10: 'B',
11: 'B',
12: 'B',
13: 'B'},
('category', ''): {0: 'Books',
1: 'Candy',
2: 'Pencil',
3: 'Table',
4: 'PC',
5: 'Printer',
6: 'Lamp',
7: 'Books',
8: 'Candy',
9: 'Pencil',
10: 'Table',
11: 'PC',
12: 'Printer',
13: 'Lamp'},
(pd.Timestamp('2021-06-28 00:00:00'),
'Sales_1'): {0: 9.937449997200002, 1: 30.71300000639998, 2: 58.81199999639999, 3: 25.661999978399994, 4: 3.657999996, 5: 12.0879999972, 6: 61.16600000040001, 7: 6.319439989199998, 8: 12.333119997600003, 9: 24.0544100028, 10: 24.384659998799997, 11: 1.9992000012000002, 12: 0.324, 13: 40.69122000000001},
(pd.Timestamp('2021-06-28 00:00:00'),
'Sales_2'): {0: 21.890370397789923, 1: 28.300470581874837, 2: 53.52039700062155, 3: 52.425508769690694, 4: 6.384936971649232, 5: 6.807138946302334, 6: 52.172, 7: 5.916852561, 8: 5.810764652, 9: 12.1243325, 10: 17.88071596, 11: 0.913782413, 12: 0.869207661, 13: 20.9447844},
(pd.Timestamp('2021-06-28 00:00:00'), 'last_week_sales'): {0: np.nan,
1: np.nan,
2: np.nan,
3: np.nan,
4: np.nan,
5: np.nan,
6: np.nan,
7: np.nan,
8: np.nan,
9: np.nan,
10: np.nan,
11: np.nan,
12: np.nan,
13: np.nan},
(pd.Timestamp('2021-06-28 00:00:00'), 'total_orders'): {0: 86.0,
1: 66.0,
2: 188.0,
3: 556.0,
4: 12.0,
5: 4.0,
6: 56.0,
7: 90.0,
8: 26.0,
9: 49.0,
10: 250.0,
11: 7.0,
12: 2.0,
13: 44.0},
(pd.Timestamp('2021-06-28 00:00:00'), 'total_sales'): {0: 4390.11,
1: 24825.059999999998,
2: 48592.39999999998,
3: 60629.77,
4: 831.22,
5: 1545.71,
6: 34584.99,
7: 5641.54,
8: 6798.75,
9: 13290.13,
10: 42692.68000000001,
11: 947.65,
12: 329.0,
13: 29889.65},
(pd.Timestamp('2021-07-05 00:00:00'),
'Sales_1'): {0: 13.690399997999998, 1: 38.723000005199985, 2: 72.4443400032, 3: 36.75802000560001, 4: 5.691999996, 5: 7.206999998399999, 6: 66.55265999039996, 7: 6.4613199911999954, 8: 12.845630001599998, 9: 26.032340003999998, 10: 30.1634600016, 11: 1.0203399996, 12: 1.4089999991999997, 13: 43.67116000320002},
(pd.Timestamp('2021-07-05 00:00:00'),
'Sales_2'): {0: 22.874363860953647, 1: 29.5726042895728, 2: 55.926190956481534, 3: 54.7820864335212, 4: 6.671946105284065, 5: 7.113126469779095, 6: 54.517, 7: 6.194107518, 8: 6.083562133, 9: 12.69221484, 10: 18.71872129, 11: 0.956574175, 12: 0.910216433, 13: 21.92632044},
(pd.Timestamp('2021-07-05 00:00:00'), 'last_week_sales'): {0: 4390.11,
1: 24825.059999999998,
2: 48592.39999999998,
3: 60629.77,
4: 831.22,
5: 1545.71,
6: 34584.99,
7: 5641.54,
8: 6798.75,
9: 13290.13,
10: 42692.68000000001,
11: 947.65,
12: 329.0,
13: 29889.65},
(pd.Timestamp('2021-07-05 00:00:00'), 'total_orders'): {0: 109.0,
1: 48.0,
2: 174.0,
3: 587.0,
4: 13.0,
5: 5.0,
6: 43.0,
7: 62.0,
8: 13.0,
9: 37.0,
10: 196.0,
11: 8.0,
12: 1.0,
13: 33.0},
(pd.Timestamp('2021-07-05 00:00:00'), 'total_sales'): {0: 3453.02,
1: 17868.730000000003,
2: 44707.82999999999,
3: 60558.97999999999,
4: 1261.0,
5: 1914.6000000000001,
6: 24146.09,
7: 6201.489999999999,
8: 5513.960000000001,
9: 9645.87,
10: 25086.785,
11: 663.0,
12: 448.61,
13: 26332.7}}).set_index(['group','category'])
I am trying to get a total
for each column per category
. So in this df
example adding 2 lines below Lamp
denoting the totals of each column. Red lines indicate the desired totals
placement:
What I've tried:
df_out['total'] = df_out.sum(level=1).loc[:, (slice(None), 'total_sales')]
But get:
ValueError: Wrong number of items passed 4, placement implies 1
I also checked this question but could not apply it to my self.
Upvotes: 4
Views: 1063
Reputation: 71689
Let us try groupby
on level=0
s = df_full.groupby(level=0).sum()
s.index = pd.MultiIndex.from_product([s.index, ['Total']])
df_out = df_full.append(s).sort_index()
print(df_out)
2021-06-28 00:00:00 2021-07-05 00:00:00
Sales_1 Sales_2 last_week_sales total_orders total_sales Sales_1 Sales_2 last_week_sales total_orders total_sales
group category
A Books 9.93745 21.890370 NaN 86.0 4390.11 13.69040 22.874364 4390.11 109.0 3453.020
Candy 30.71300 28.300471 NaN 66.0 24825.06 38.72300 29.572604 24825.06 48.0 17868.730
Lamp 61.16600 52.172000 NaN 56.0 34584.99 66.55266 54.517000 34584.99 43.0 24146.090
PC 3.65800 6.384937 NaN 12.0 831.22 5.69200 6.671946 831.22 13.0 1261.000
Pencil 58.81200 53.520397 NaN 188.0 48592.40 72.44434 55.926191 48592.40 174.0 44707.830
Printer 12.08800 6.807139 NaN 4.0 1545.71 7.20700 7.113126 1545.71 5.0 1914.600
Table 25.66200 52.425509 NaN 556.0 60629.77 36.75802 54.782086 60629.77 587.0 60558.980
Total 202.03645 221.500823 0.0 968.0 175399.26 241.06742 231.457318 175399.26 979.0 153910.250
B Books 6.31944 5.916853 NaN 90.0 5641.54 6.46132 6.194108 5641.54 62.0 6201.490
Candy 12.33312 5.810765 NaN 26.0 6798.75 12.84563 6.083562 6798.75 13.0 5513.960
Lamp 40.69122 20.944784 NaN 44.0 29889.65 43.67116 21.926320 29889.65 33.0 26332.700
PC 1.99920 0.913782 NaN 7.0 947.65 1.02034 0.956574 947.65 8.0 663.000
Pencil 24.05441 12.124332 NaN 49.0 13290.13 26.03234 12.692215 13290.13 37.0 9645.870
Printer 0.32400 0.869208 NaN 2.0 329.00 1.40900 0.910216 329.00 1.0 448.610
Table 24.38466 17.880716 NaN 250.0 42692.68 30.16346 18.718721 42692.68 196.0 25086.785
Total 110.10605 64.460440 0.0 468.0 99589.40 121.60325 67.481717 99589.40 350.0 73892.415
Upvotes: 4