Jonas Palačionis
Jonas Palačionis

Reputation: 4842

Adding level 2 index as a sum of other indexes with a condition

I have a df:

df = pd.DataFrame.from_dict({('group', ''): {0: 'A',
  1: 'A',
  2: 'A',
  3: 'A',
  4: 'A',
  5: 'A',
  6: 'A',
  7: 'A',
  8: 'A',
  9: 'B',
  10: 'B',
  11: 'B',
  12: 'B',
  13: 'B',
  14: 'B',
  15: 'B',
  16: 'B',
  17: 'B',
  18: 'all',
  19: 'all'},
 ('category', ''): {0: 'Amazon',
  1: 'Apple',
  2: 'Facebook',
  3: 'Google',
  4: 'Netflix',
  5: 'Tesla',
  6: 'Total',
  7: 'Uber',
  8: 'total',
  9: 'Amazon',
  10: 'Apple',
  11: 'Facebook',
  12: 'Google',
  13: 'Netflix',
  14: 'Tesla',
  15: 'Total',
  16: 'Uber',
  17: 'total',
  18: 'Total',
  19: 'total'},
 (pd.Timestamp('2020-06-29 00:00:00'), 'last_sales'): {0: 195.0,
  1: 61.0,
  2: 106.0,
  3: 61.0,
  4: 37.0,
  5: 13.0,
  6: 954.0,
  7: 4.0,
  8: 477.0,
  9: 50.0,
  10: 50.0,
  11: 75.0,
  12: 43.0,
  13: 17.0,
  14: 14.0,
  15: 504.0,
  16: 3.0,
  17: 252.0,
  18: 2916.0,
  19: 2916.0},
 (pd.Timestamp('2020-06-29 00:00:00'), 'sales'): {0: 1268.85,
  1: 18274.385000000002,
  2: 19722.65,
  3: 55547.255,
  4: 15323.800000000001,
  5: 1688.6749999999997,
  6: 227463.23,
  7: 1906.0,
  8: 113731.615,
  9: 3219.6499999999996,
  10: 15852.060000000001,
  11: 17743.7,
  12: 37795.15,
  13: 5918.5,
  14: 1708.75,
  15: 166349.64,
  16: 937.01,
  17: 83174.82,
  18: 787625.7400000001,
  19: 787625.7400000001},
 (pd.Timestamp('2020-06-29 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2020-07-06 00:00:00'), 'last_sales'): {0: 26.0,
  1: 39.0,
  2: 79.0,
  3: 49.0,
  4: 10.0,
  5: 10.0,
  6: 436.0,
  7: 5.0,
  8: 218.0,
  9: 89.0,
  10: 34.0,
  11: 133.0,
  12: 66.0,
  13: 21.0,
  14: 20.0,
  15: 732.0,
  16: 3.0,
  17: 366.0,
  18: 2336.0,
  19: 2336.0},
 (pd.Timestamp('2020-07-06 00:00:00'), 'sales'): {0: 3978.15,
  1: 12138.96,
  2: 19084.175,
  3: 40033.46000000001,
  4: 4280.15,
  5: 1495.1,
  6: 165548.29,
  7: 1764.15,
  8: 82774.145,
  9: 8314.92,
  10: 12776.649999999996,
  11: 28048.075,
  12: 55104.21000000002,
  13: 6962.844999999999,
  14: 3053.2000000000003,
  15: 231049.11000000002,
  16: 1264.655,
  17: 115524.55500000001,
  18: 793194.8000000002,
  19: 793194.8000000002},
 (pd.Timestamp('2020-07-06 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2021-06-28 00:00:00'), 'last_sales'): {0: 96.0,
  1: 56.0,
  2: 106.0,
  3: 44.0,
  4: 34.0,
  5: 13.0,
  6: 716.0,
  7: 9.0,
  8: 358.0,
  9: 101.0,
  10: 22.0,
  11: 120.0,
  12: 40.0,
  13: 13.0,
  14: 8.0,
  15: 610.0,
  16: 1.0,
  17: 305.0,
  18: 2652.0,
  19: 2652.0},
 (pd.Timestamp('2021-06-28 00:00:00'), 'sales'): {0: 5194.95,
  1: 19102.219999999994,
  2: 22796.420000000002,
  3: 30853.115,
  4: 11461.25,
  5: 992.6,
  6: 188143.41,
  7: 3671.15,
  8: 94071.705,
  9: 6022.299999999998,
  10: 7373.6,
  11: 33514.0,
  12: 35943.45,
  13: 4749.000000000001,
  14: 902.01,
  15: 177707.32,
  16: 349.3,
  17: 88853.66,
  18: 731701.46,
  19: 731701.46},
 (pd.Timestamp('2021-06-28 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2021-07-07 00:00:00'), 'last_sales'): {0: 45.0,
  1: 47.0,
  2: 87.0,
  3: 45.0,
  4: 13.0,
  5: 8.0,
  6: 494.0,
  7: 2.0,
  8: 247.0,
  9: 81.0,
  10: 36.0,
  11: 143.0,
  12: 56.0,
  13: 9.0,
  14: 9.0,
  15: 670.0,
  16: 1.0,
  17: 335.0,
  18: 2328.0,
  19: 2328.0},
 (pd.Timestamp('2021-07-07 00:00:00'), 'sales'): {0: 7556.414999999998,
  1: 14985.05,
  2: 16790.899999999998,
  3: 36202.729999999996,
  4: 4024.97,
  5: 1034.45,
  6: 163960.32999999996,
  7: 1385.65,
  8: 81980.16499999998,
  9: 5600.544999999999,
  10: 11209.92,
  11: 32832.61,
  12: 42137.44500000001,
  13: 3885.1499999999996,
  14: 1191.5,
  15: 194912.34000000003,
  16: 599.0,
  17: 97456.17000000001,
  18: 717745.3400000001,
  19: 717745.3400000001},
 (pd.Timestamp('2021-07-07 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0}}).set_index(['group','category'])

I am trying to create a level 2 index called combined which would be the sum of sales & last_sales of all categories except for Facebook and total / Total. So that the df would look like this:

enter image description here

I tried doing it with .loc but with no success:

s = df_out.stack(0)

s['combined'] = 0
s.loc[(slice(None),[x for x in s.loc[(slice(None),:) if x != 'Facebook']].sum()

Upvotes: 5

Views: 130

Answers (2)

mozway
mozway

Reputation: 260835

You can group on level 0, and concat the sum per group if the name is not "all", while adding indexes. Then combine this output with the original data and sort_index by level=0:

pd.concat([df,
           pd.concat({(name, 'combined'): d.drop(['Facebook', 'total', 'Total'], level=1).sum()
                      for name,d in df.groupby(level=0) if name != 'all'}, axis=1).T
          ]).sort_index(level=0)

output:

               2020-06-29 00:00:00                        2020-07-06 00:00:00                        2021-06-28 00:00:00                        2021-07-07 00:00:00                       
                        last_sales       sales difference          last_sales       sales difference          last_sales       sales difference          last_sales       sales difference
group category                                                                                                                                                                            
A     Amazon                 195.0    1268.850        0.0                26.0    3978.150        0.0                96.0    5194.950        0.0                45.0    7556.415        0.0
      Apple                   61.0   18274.385        0.0                39.0   12138.960        0.0                56.0   19102.220        0.0                47.0   14985.050        0.0
      Facebook               106.0   19722.650        0.0                79.0   19084.175        0.0               106.0   22796.420        0.0                87.0   16790.900        0.0
      Google                  61.0   55547.255        0.0                49.0   40033.460        0.0                44.0   30853.115        0.0                45.0   36202.730        0.0
      Netflix                 37.0   15323.800        0.0                10.0    4280.150        0.0                34.0   11461.250        0.0                13.0    4024.970        0.0
      Tesla                   13.0    1688.675        0.0                10.0    1495.100        0.0                13.0     992.600        0.0                 8.0    1034.450        0.0
      Total                  954.0  227463.230        0.0               436.0  165548.290        0.0               716.0  188143.410        0.0               494.0  163960.330        0.0
      Uber                     4.0    1906.000        0.0                 5.0    1764.150        0.0                 9.0    3671.150        0.0                 2.0    1385.650        0.0
      combined               371.0   94008.965        0.0               139.0   63689.970        0.0               252.0   71275.285        0.0               160.0   65189.265        0.0
      total                  477.0  113731.615        0.0               218.0   82774.145        0.0               358.0   94071.705        0.0               247.0   81980.165        0.0
B     Amazon                  50.0    3219.650        0.0                89.0    8314.920        0.0               101.0    6022.300        0.0                81.0    5600.545        0.0
      Apple                   50.0   15852.060        0.0                34.0   12776.650        0.0                22.0    7373.600        0.0                36.0   11209.920        0.0
      Facebook                75.0   17743.700        0.0               133.0   28048.075        0.0               120.0   33514.000        0.0               143.0   32832.610        0.0
      Google                  43.0   37795.150        0.0                66.0   55104.210        0.0                40.0   35943.450        0.0                56.0   42137.445        0.0
      Netflix                 17.0    5918.500        0.0                21.0    6962.845        0.0                13.0    4749.000        0.0                 9.0    3885.150        0.0
      Tesla                   14.0    1708.750        0.0                20.0    3053.200        0.0                 8.0     902.010        0.0                 9.0    1191.500        0.0
      Total                  504.0  166349.640        0.0               732.0  231049.110        0.0               610.0  177707.320        0.0               670.0  194912.340        0.0
      Uber                     3.0     937.010        0.0                 3.0    1264.655        0.0                 1.0     349.300        0.0                 1.0     599.000        0.0
      combined               177.0   65431.120        0.0               233.0   87476.480        0.0               185.0   55339.660        0.0               192.0   64623.560        0.0
      total                  252.0   83174.820        0.0               366.0  115524.555        0.0               305.0   88853.660        0.0               335.0   97456.170        0.0
all   Total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0
      total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0

Upvotes: 0

Shubham Sharma
Shubham Sharma

Reputation: 71689

Solution

  • Drop all in level=0, similarly drop the other unwanted level values in level=1
  • Calculate the sum on level=0 to aggregate the frame
  • Create Multindex to add the additional level combined in aggregated frame
  • Append and sort the index to maintain the order
s = df.drop('all').drop(['Facebook', 'total', 'Total'], level=1).sum(level=0)
s.index = pd.MultiIndex.from_product([s.index, ['combined']])
df_out = df.append(s).sort_index()

Result

                        2020-06-29 00:00:00                        2020-07-06 00:00:00                        2021-06-28 00:00:00                        2021-07-07 00:00:00                       
                        last_sales       sales difference          last_sales       sales difference          last_sales       sales difference          last_sales       sales difference
group category                                                                                                                                                                            
A     Amazon                 195.0    1268.850        0.0                26.0    3978.150        0.0                96.0    5194.950        0.0                45.0    7556.415        0.0
      Apple                   61.0   18274.385        0.0                39.0   12138.960        0.0                56.0   19102.220        0.0                47.0   14985.050        0.0
      Facebook               106.0   19722.650        0.0                79.0   19084.175        0.0               106.0   22796.420        0.0                87.0   16790.900        0.0
      Google                  61.0   55547.255        0.0                49.0   40033.460        0.0                44.0   30853.115        0.0                45.0   36202.730        0.0
      Netflix                 37.0   15323.800        0.0                10.0    4280.150        0.0                34.0   11461.250        0.0                13.0    4024.970        0.0
      Tesla                   13.0    1688.675        0.0                10.0    1495.100        0.0                13.0     992.600        0.0                 8.0    1034.450        0.0
      Total                  954.0  227463.230        0.0               436.0  165548.290        0.0               716.0  188143.410        0.0               494.0  163960.330        0.0
      Uber                     4.0    1906.000        0.0                 5.0    1764.150        0.0                 9.0    3671.150        0.0                 2.0    1385.650        0.0
      combined               371.0   94008.965        0.0               139.0   63689.970        0.0               252.0   71275.285        0.0               160.0   65189.265        0.0
      total                  477.0  113731.615        0.0               218.0   82774.145        0.0               358.0   94071.705        0.0               247.0   81980.165        0.0
B     Amazon                  50.0    3219.650        0.0                89.0    8314.920        0.0               101.0    6022.300        0.0                81.0    5600.545        0.0
      Apple                   50.0   15852.060        0.0                34.0   12776.650        0.0                22.0    7373.600        0.0                36.0   11209.920        0.0
      Facebook                75.0   17743.700        0.0               133.0   28048.075        0.0               120.0   33514.000        0.0               143.0   32832.610        0.0
      Google                  43.0   37795.150        0.0                66.0   55104.210        0.0                40.0   35943.450        0.0                56.0   42137.445        0.0
      Netflix                 17.0    5918.500        0.0                21.0    6962.845        0.0                13.0    4749.000        0.0                 9.0    3885.150        0.0
      Tesla                   14.0    1708.750        0.0                20.0    3053.200        0.0                 8.0     902.010        0.0                 9.0    1191.500        0.0
      Total                  504.0  166349.640        0.0               732.0  231049.110        0.0               610.0  177707.320        0.0               670.0  194912.340        0.0
      Uber                     3.0     937.010        0.0                 3.0    1264.655        0.0                 1.0     349.300        0.0                 1.0     599.000        0.0
      combined               177.0   65431.120        0.0               233.0   87476.480        0.0               185.0   55339.660        0.0               192.0   64623.560        0.0
      total                  252.0   83174.820        0.0               366.0  115524.555        0.0               305.0   88853.660        0.0               335.0   97456.170        0.0
all   Total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0
      total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0

Upvotes: 4

Related Questions