Reputation: 1865
I have a table with multiple datetime columns, I wish to extract weekday for each of those columns and add as a new column.
Sample dataset:
structure(list(mealTime = structure(c(1542492000, 1578852000,
1604253600, 1545901200, 1549821600, 1544306400), tzone = "UTC", class = c("POSIXct",
"POSIXt")), weight_measure_time = structure(c(1542226000, 1578812400,
1594710000, 1545896762, 1546416823, 1544227245), tzone = "UTC", class = c("POSIXct",
"POSIXt")), height_measure_time = structure(c(1542106434, 1543337043,
1543337043, 1542387988, 1542366547, 1542802228), tzone = "UTC", class = c("POSIXct",
"POSIXt")), hba1c_measure_time = structure(c(1542106860, 1573455600,
1594625400, 1544781600, 1545920520, 1544096580), tzone = "UTC", class = c("POSIXct",
"POSIXt")), bpMeasureTime = structure(c(1542380623, 1578812400,
1583218800, 1545896774, 1546416837, 1544266110), tzone = "UTC", class = c("POSIXct",
"POSIXt"))), row.names = c(NA, -6L), class = c("tbl_df", "tbl",
"data.frame"))
which looks something like this:
> smple
# A tibble: 6 x 5
mealTime weight_measure_time height_measure_time
<dttm> <dttm> <dttm>
1 2018-11-17 22:00:00 2018-11-14 20:06:40 2018-11-13 10:53:54
2 2020-01-12 18:00:00 2020-01-12 07:00:00 2018-11-27 16:44:03
3 2020-11-01 18:00:00 2020-07-14 07:00:00 2018-11-27 16:44:03
4 2018-12-27 09:00:00 2018-12-27 07:46:02 2018-11-16 17:06:28
5 2019-02-10 18:00:00 2019-01-02 08:13:43 2018-11-16 11:09:07
6 2018-12-08 22:00:00 2018-12-08 00:00:45 2018-11-21 12:10:28
# ... with 2 more variables: hba1c_measure_time <dttm>, bpMeasureTime <dttm>
For the above dataset, the expected result I am expecting is, i.e. for each datetime column extract the weekday and add it in respective column:
glimpse(smple)
Rows: 6
Columns: 10
$ mealTime <dttm> 2018-11-17 22:00:00, 2020-01-12 18:00:00, 20~
$ weight_measure_time <dttm> 2018-11-14 20:06:40, 2020-01-12 07:00:00, 20~
$ height_measure_time <dttm> 2018-11-13 10:53:54, 2018-11-27 16:44:03, 20~
$ hba1c_measure_time <dttm> 2018-11-13 11:01:00, 2019-11-11 07:00:00, 20~
$ bpMeasureTime <dttm> 2018-11-16 15:03:43, 2020-01-12 07:00:00, 20~
$ mealTime_day <chr> "Saturday", "Sunday", "Sunday", "Thursday", "~
$ weight_measure_time_day <chr> "Wednesday", "Sunday", "Tuesday", "Thursday",~
$ height_measure_time_day <chr> "Tuesday", "Tuesday", "Tuesday", "Friday", "F~
$ hba1c_measure_time_day <chr> "Tuesday", "Monday", "Monday", "Friday", "Thu~
$ bpMeasureTime_day <chr> "Friday", "Sunday", "Tuesday", "Thursday", "W~
In the base R, I can achieve the above as follows:
smple[paste(colnames(smple), "day", sep="_")] = apply(smple, 2, lubridate::wday, label=TRUE, abbr=FALSE)
I wanted to know if there is a similar way in tidyverse, which adds column dynamically by evaluating both LHS and RHS.
Upvotes: 2
Views: 322
Reputation: 78927
dplyr
solution only using weekdays
from base R
library(dplyr)
df %>%
mutate(across(everything(), weekdays, .names = "{.col}_day"))
Output:
mealTime weight_measure_time height_measure_time hba1c_measure_time bpMeasureTime mealTime_day weight_measure_time_day
<dttm> <dttm> <dttm> <dttm> <dttm> <chr> <chr>
1 2018-11-17 22:00:00 2018-11-14 20:06:40 2018-11-13 10:53:54 2018-11-13 11:01:00 2018-11-16 15:03:43 Samstag Mittwoch
2 2020-01-12 18:00:00 2020-01-12 07:00:00 2018-11-27 16:44:03 2019-11-11 07:00:00 2020-01-12 07:00:00 Sonntag Sonntag
3 2020-11-01 18:00:00 2020-07-14 07:00:00 2018-11-27 16:44:03 2020-07-13 07:30:00 2020-03-03 07:00:00 Sonntag Dienstag
4 2018-12-27 09:00:00 2018-12-27 07:46:02 2018-11-16 17:06:28 2018-12-14 10:00:00 2018-12-27 07:46:14 Donnerstag Donnerstag
5 2019-02-10 18:00:00 2019-01-02 08:13:43 2018-11-16 11:09:07 2018-12-27 14:22:00 2019-01-02 08:13:57 Sonntag Mittwoch
6 2018-12-08 22:00:00 2018-12-08 00:00:45 2018-11-21 12:10:28 2018-12-06 11:43:00 2018-12-08 10:48:30 Samstag Samstag
# ... with 3 more variables: height_measure_time_day <chr>, hba1c_measure_time_day <chr>, bpMeasureTime_day <chr>
Upvotes: 1
Reputation: 5788
Base R solution:
cbind(
df,
setNames(
data.frame(
Map(
weekdays,
df
)
),
paste0(
names(df),
ifelse(
grepl(
"_",
names(df)
),
"_day_of_week",
"DayOfWeek"
)
)
)
)
Upvotes: 1
Reputation: 6489
Here is one way to solve your problem:
df[paste0(names(df), "_day")] <- lapply(df, weekdays)
Upvotes: 3
Reputation: 124083
Making use of across
and where
you could do:
library(dplyr)
library(lubridate)
mutate(smpl, across(where(is.POSIXct), lubridate::wday,
label=TRUE, abbr=FALSE, .names = "{.col}_day"))
#> # A tibble: 6 x 10
#> mealTime weight_measure_time height_measure_time
#> <dttm> <dttm> <dttm>
#> 1 2018-11-17 22:00:00 2018-11-14 20:06:40 2018-11-13 10:53:54
#> 2 2020-01-12 18:00:00 2020-01-12 07:00:00 2018-11-27 16:44:03
#> 3 2020-11-01 18:00:00 2020-07-14 07:00:00 2018-11-27 16:44:03
#> 4 2018-12-27 09:00:00 2018-12-27 07:46:02 2018-11-16 17:06:28
#> 5 2019-02-10 18:00:00 2019-01-02 08:13:43 2018-11-16 11:09:07
#> 6 2018-12-08 22:00:00 2018-12-08 00:00:45 2018-11-21 12:10:28
#> # … with 7 more variables: hba1c_measure_time <dttm>, bpMeasureTime <dttm>,
#> # mealTime_day <dbl>, weight_measure_time_day <dbl>,
#> # height_measure_time_day <dbl>, hba1c_measure_time_day <dbl>,
#> # bpMeasureTime_day <dbl>
Upvotes: 5