Reputation: 87
Sample dataset:
id fruit
0 7 NaN
1 7 apple
2 7 NaN
3 7 mango
4 7 apple
5 7 potato
6 3 berry
7 3 olive
8 3 olive
9 3 grape
10 3 NaN
11 3 mango
12 3 potato
In fruit
column value of NaN
and potato
is 0. All other strings value is 1. I want to generate a new column sum_last_3
where each row calculates the sum of previous 3 rows (inclusive) of fruit
column. When a new id appears, it should calculate from the beginning.
Output I want:
id fruit sum_last3
0 7 NaN 0
1 7 apple 1
2 7 NaN 1
3 7 mango 2
4 7 apple 2
5 7 potato 2
6 3 berry 1
7 3 olive 2
8 3 olive 3
9 3 grape 3
10 3 NaN 2
11 3 mango 2
12 3 potato 1
My Code:
df['sum_last5'] = (df['fruit'].ne('potato') & df['fruit'].notna())
.groupby('id',sort=False, as_index=False)['fruit']
.rolling(min_periods=1, window=3).sum().astype(int).values
Upvotes: 3
Views: 321
Reputation: 23237
You can modify your codes slightly, as follows:
df['sum_last3'] = ((df['fruit'].ne('potato') & df['fruit'].notna())
.groupby(df['id'],sort=False)
.rolling(min_periods=1, window=3).sum().astype(int)
.droplevel(0)
)
or use .values
as in your codes:
df['sum_last3'] = ((df['fruit'].ne('potato') & df['fruit'].notna())
.groupby(df['id'],sort=False)
.rolling(min_periods=1, window=3).sum().astype(int)
.values
)
Your codes are close, just need to change id
to df['id']
in the .groupby()
call (since the main subject for calling .groupby()
is now a boolean series rather than df
itself, so .groupby()
cannot recognize the id
column by the column label 'id' alone and need also the dataframe name to fully qualify/identify the column).
Also remove as_index=False
since this parameter is for dataframe rather than (boolean) series here.
Result:
print(df)
id fruit sum_last3
0 7 NaN 0
1 7 apple 1
2 7 NaN 1
3 7 mango 2
4 7 apple 2
5 7 potato 2
6 3 berry 1
7 3 olive 2
8 3 olive 3
9 3 grape 3
10 3 NaN 2
11 3 mango 2
12 3 potato 1
Upvotes: 2