Reputation: 1342
I'm having some difficulty in structuring the following data, I would like the help of experts on this topic
I need to structure a json in dataframe in pyspark. I don't have its complete schema but it has this nested structure below that doesn't change:
import http.client conn = http.client.HTTPSConnection("xxx")
payload = ""
conn.request("GET", "xxx", payload)
res = conn.getresponse() data = res.read().decode("utf-8")
json_obj = json.loads(data)
df = json.dumps(json_obj, indent=2)
This is the Json:
{ "car": {
"top1": {
"cl": [
{
"nm": "Setor A",
"prc": "40,00 %",
"tv": [
{
"logo": "https://www.test.com/ddd.jpg",
"nm": "BDFG",
"lk1": "https://www.test.com/ddd/BDFG/",
"lk2": "https://www.test-ddd.com",
"dta": [
{
"nm": "PA",
"cp": "nl",
"vl": "$ 2,50"
},
{
"nm": "FVP",
"cp": "UV",
"vl": "No"
}
],
"prc": "30,00 %"
},
{
"logo": "https://www.test.com/ccc.jpg",
"nome": "BDFH",
"lk1": "https://www.test.com/ddd/BDFH/",
"lk2": "https://www.test-ddd.com",
"dta": [
{
"nm": "PA",
"cp": "nl",
"vl": "$ 2,50"
},
{
"nm": "FVP",
"cp": "UV",
"vl": "No"
}
],
"prc": "70,00 %"
}
]
},
{
"nm": "B",
"prc": "60,00 %",
"tv": [
{
"logo": "https://www.test.com/bomm.jpg",
"nm": "BOOM",
"lk1": "https://www.test.com/ddd/BDFH/",
"lk2": "https://www.test-ddd.com",
"dta": [
{
"nm": "PA",
"cp": "nl",
"vl": "$ 2,50"
},
{
"nm": "FVP",
"cp": "UV",
"vl": "No"
}
],
"prc": "100,00 %"
}
]
}
]
},
"top2": {
"cl": [{}]
"top3": {
"cl": [{}]
}
Example of a json file
I tried to somehow structure my data but without success:
schema = StructType(
[
StructField("car", ArrayType(StructType([
StructField("top1", ArrayType(StructType([
StructField("cl", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("prc", StringType(),True),
StructField("tv", ArrayType(StructType([
StructField("logo", StringType(),True),
StructField("nm", StringType(),True),
StructField("lk1", StringType(),True),
StructField("lk2", StringType(),True),
StructField("dta", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("cp", StringType(),True),
StructField("vl", StringType(),True)]))),
StructField("prc", StringType(),True)])))])))]))),
StructField("top2", ArrayType(StructType([
StructField("cl", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("prc", StringType(),True),
StructField("tv", ArrayType(StructType([
StructField("logo", StringType(),True),
StructField("nm", StringType(),True),
StructField("lk1", StringType(),True),
StructField("lk2", StringType(),True),
StructField("dta", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("cp", StringType(),True),
StructField("vl", StringType(),True)]))),
StructField("prc", StringType(),True)])))])))]))),
StructField("top3", ArrayType(StructType([
StructField("cl", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("prc", StringType(),True),
StructField("tv", ArrayType(StructType([
StructField("logo", StringType(),True),
StructField("nm", StringType(),True),
StructField("lk1", StringType(),True),
StructField("lk2", StringType(),True),
StructField("dta", ArrayType(StructType([
StructField("nm", StringType(),True),
StructField("cp", StringType(),True),
StructField("vl", StringType(),True)]))),
StructField("prc", StringType(),True)])))])))])))])))])
df2 = sqlContext.read.json(df, schema)
df2.printSchema()
i want to transform something like this:
Is there any function that can facilitate this break and structure this data?
Upvotes: 1
Views: 714
Reputation: 5487
You can pass JSON file path or RDD to json() method.
You need create RDD out of your JSON string using parallelize() then pass this RDD to json().
spark = SparkSession.builder.master("local[*]").getOrCreate()
rdd = spark.sparkContext.parallelize([json.dumps(json_obj,indent=2)])
# Schema will be inferred automatically. You can pass schema if you want.
json_df = spark.read.json(rdd)
Upvotes: 2