Reputation: 45
I have multiple sets of two lists that I need to convert into one dictionary by looking at every permutation across rows in a dataframe.
For example, if there is a list of ['cat1','cat2'] and a list of ['top1','top2'], I'd like a resulting dictionary of {'cat1':'top1','cat1':'top2','cat2':'top1','cat2':'top2'}
Here is my current code that gets close but ends up using every letter and not string...
import pandas as pd
test_df = pd.DataFrame()
test_df['category'] = [['cat1'],['cat2'],['cat3','cat3.5'],['cat5']]
test_df['topic'] = [['top1'],[''],['top2','top3'],['top4']]
final_dict = {}
res = {}
for index, row in test_df.iterrows():
print(row["category"], row["topic"])
temp_keys = row["category"]
temp_values = row["topic"]
res = {}
for test_key in temp_keys:
#print(test_key)
for test_value in temp_values:
#print(test_value)
#print(res)
test_key = str(test_key)
print(test_key)
test_value = str(test_value)
print(test_value)
#res[key] = key
#res = dict(zip(str(key),str(test_value)))
res = dict(zip(str(test_key),str(test_value)))
print(res)
print('\n')
Upvotes: 0
Views: 95
Reputation: 120559
If you want a list of tuple instead of dict, you can use pd.MultiIndex.from_product
:
out = test_df.apply(pd.MultiIndex.from_product, axis=1).apply(list)
>>> out
0 [(cat1, top1)]
1 [(cat2, )]
2 [(cat3, top2), (cat3, top3), (cat3.5, top2), (...
3 [(cat5, top4)]
dtype: object
>>> out.tolist()
[[('cat1', 'top1')],
[('cat2', '')],
[('cat3', 'top2'), ('cat3', 'top3'), ('cat3.5', 'top2'), ('cat3.5', 'top3')],
[('cat5', 'top4')]]
Upvotes: 1