Reputation: 333
I have the following code that I have created from running some analysis and I have put the results in a defaultdict(list). Afterwards I put the results into a csv file. First, Id like to remove the items that contain 'nan' values in Check2
How would I remove the values inside of the list of dicts?
from numpy import nan
from collections import defaultdict
d = defaultdict(list,
{'Address_1': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1' : 8,
'Check2' : 1},
{'Name': 'name',
'Address_match': 'address_match_2',
'ID': 'id',
'Type': 'abc',
'Check1' : 20,
'Check2' : nan},
{'Name': 'name',
'Address_match': 'address_match_3',
'ID': 'id',
'Type': 'abc',
'Check1' : 27,
'Check2' : nan}],
'Address_2': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1' : 30,
'Check2' : 1},
{'Name': 'name',
'Address_match': 'address_match_2',
'ID': 'id',
'Type': 'abc',
'Check1' : 38,
'Check2' : nan},
{'Name': 'name',
'Address_match': 'address_match_3',
'ID': 'id',
'Type': 'abc',
'Check1' : 12,
'Check2' : nan}]})
Afterwards my results should be:
d = defaultdict(list,
{'Address_1': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1' : 8,
'Check2' : 1}],
'Address_2': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1' : 30,
'Check2' : 1}
]})
Upvotes: 0
Views: 275
Reputation: 524
You can do something like this:
import math
def remove_nan_att(d, att):
return {key: [o for o in d[key] if not math.isnan(o[att])] for key in d}
d = remove_nan_att(d, 'Check2')
Go over the dict, and for each key, go over its list and filter nan values by the wanted attribute.
In case nan
is from numpy:
from numpy import nan
def remove_nan_att(d, att):
return {key: [o for o in d[key] if not o[att] is nan] for key in d}
d = remove_nan_att(d, 'Check2')
And if you don't want to use it as a function:
att = 'Check2'
d = {key: [o for o in d[key] if not o[att] is nan] for key in d}
Upvotes: 2
Reputation: 120479
Try:
df = pd.DataFrame.from_records(d).unstack()
d = df[df.str['Check2'].notna()].unstack(level=0).to_dict('list')
print(d)
# Output:
{'Address_1': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 8,
'Check2': 1}],
'Address_2': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 30,
'Check2': 1}]}
Update
You can simply use a double comprehension:
d = [{k: [v for v in l if pd.notna(v['Check2'])]} for k, l in d.items()]
print(d)
# Output:
[{'Address_1': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 8,
'Check2': 1}]},
{'Address_2': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 30,
'Check2': 1}]}]
To be more understandable, here is the version with normal loops:
data = defaultdict(list)
for k, l in d.items(): # for each key in d (Address_1, Address_2, ...)
for v in l: # for each record in key {'Name': ...}
if pd.notna(v['Check2']): # check the condition
data[k].append(v) # append to the dict
Upvotes: 1
Reputation:
You can use dict comprehension + filter (it is filtering dictionaries where Check2
is not np.nan
in each list in d
):
out = {k: list(filter(lambda x: ~np.isnan(x['Check2']), lst)) for k, lst in d.items()}
You can do the same using dict comprehension + list comprehension:
out = {k: [dct for dct in lst if not np.isnan(dct['Check2'])] for k, lst in d.items()}
Output:
{'Address_1': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 8,
'Check2': 1}],
'Address_2': [{'Name': 'name',
'Address_match': 'address_match_1',
'ID': 'id',
'Type': 'abc',
'Check1': 30,
'Check2': 1}]}
Upvotes: 1