Reputation: 1622
I have this xml file (it's called "LogReg.xml" and it contains some information about a logistic regression (I am interested in the name of the features and their coefficient - I'll explain in more detail below):
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML xmlns="http://www.dmg.org/PMML-4_4" xmlns:data="http://jpmml.org/jpmml-model/InlineTable" version="4.4">
<Header>
<Application name="JPMML-SkLearn" version="1.6.35"/>
<Timestamp>2022-02-15T09:44:54Z</Timestamp>
</Header>
<MiningBuildTask>
<Extension name="repr">PMMLPipeline(steps=[('classifier', LogisticRegression())])</Extension>
</MiningBuildTask>
<DataDictionary>
<DataField name="Target" optype="categorical" dataType="integer">
<Value value="0"/>
<Value value="1"/>
</DataField>
<DataField name="const" optype="continuous" dataType="double"/>
<DataField name="grade" optype="continuous" dataType="double"/>
<DataField name="emp_length" optype="continuous" dataType="double"/>
<DataField name="dti" optype="continuous" dataType="double"/>
<DataField name="Orig_FicoScore" optype="continuous" dataType="double"/>
<DataField name="inq_last_6mths" optype="continuous" dataType="double"/>
<DataField name="acc_open_past_24mths" optype="continuous" dataType="double"/>
<DataField name="mort_acc" optype="continuous" dataType="double"/>
<DataField name="mths_since_recent_bc" optype="continuous" dataType="double"/>
<DataField name="num_rev_tl_bal_gt_0" optype="continuous" dataType="double"/>
<DataField name="percent_bc_gt_75" optype="continuous" dataType="double"/>
</DataDictionary>
<RegressionModel functionName="classification" algorithmName="sklearn.linear_model._logistic.LogisticRegression" normalizationMethod="logit">
<MiningSchema>
<MiningField name="Target" usageType="target"/>
<MiningField name="const"/>
<MiningField name="grade"/>
<MiningField name="emp_length"/>
<MiningField name="dti"/>
<MiningField name="Orig_FicoScore"/>
<MiningField name="inq_last_6mths"/>
<MiningField name="acc_open_past_24mths"/>
<MiningField name="mort_acc"/>
<MiningField name="mths_since_recent_bc"/>
<MiningField name="num_rev_tl_bal_gt_0"/>
<MiningField name="percent_bc_gt_75"/>
</MiningSchema>
<Output>
<OutputField name="probability(0)" optype="continuous" dataType="double" feature="probability" value="0"/>
<OutputField name="probability(1)" optype="continuous" dataType="double" feature="probability" value="1"/>
</Output>
<RegressionTable intercept="0.8064694059338298" targetCategory="1">
<NumericPredictor name="const" coefficient="0.8013433785974717"/>
<NumericPredictor name="grade" coefficient="0.9010481046582982"/>
<NumericPredictor name="emp_length" coefficient="0.9460686056314133"/>
<NumericPredictor name="dti" coefficient="0.5117062988491518"/>
<NumericPredictor name="Orig_FicoScore" coefficient="0.07944303372859234"/>
<NumericPredictor name="inq_last_6mths" coefficient="0.20516234445402765"/>
<NumericPredictor name="acc_open_past_24mths" coefficient="0.4852503249658917"/>
<NumericPredictor name="mort_acc" coefficient="0.6673203078463711"/>
<NumericPredictor name="mths_since_recent_bc" coefficient="0.1962158305958366"/>
<NumericPredictor name="num_rev_tl_bal_gt_0" coefficient="0.12964661294856686"/>
<NumericPredictor name="percent_bc_gt_75" coefficient="0.04534570018290847"/>
</RegressionTable>
<RegressionTable intercept="0.0" targetCategory="0"/>
</RegressionModel>
</PMML>
I have parsed it using this code:
from lxml import objectify
path = 'LogReg.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()
data = []
if True:
for elt in root.RegressionModel.RegressionTable:
el_data = {}
for child in elt.getchildren():
el_data[child.tag] = child.text
data.append(el_data)
perf = pd.DataFrame(data)
I am interested in parsing this bit:
<RegressionTable intercept="0.8064694059338298" targetCategory="1">
<NumericPredictor name="const" coefficient="0.8013433785974717"/>
<NumericPredictor name="grade" coefficient="0.9010481046582982"/>
<NumericPredictor name="emp_length" coefficient="0.9460686056314133"/>
<NumericPredictor name="dti" coefficient="0.5117062988491518"/>
<NumericPredictor name="Orig_FicoScore" coefficient="0.07944303372859234"/>
<NumericPredictor name="inq_last_6mths" coefficient="0.20516234445402765"/>
<NumericPredictor name="acc_open_past_24mths" coefficient="0.4852503249658917"/>
<NumericPredictor name="mort_acc" coefficient="0.6673203078463711"/>
<NumericPredictor name="mths_since_recent_bc" coefficient="0.1962158305958366"/>
<NumericPredictor name="num_rev_tl_bal_gt_0" coefficient="0.12964661294856686"/>
<NumericPredictor name="percent_bc_gt_75" coefficient="0.04534570018290847"/>
</RegressionTable>
so that I can build the following dictionary:
myDict = {
"const : 0.8013433785974717,
"grade" : 0.9010481046582982,
"emp_length" : 0.9460686056314133,
"dti" : 0.5117062988491518,
"Orig_FicoScore" : 0.07944303372859234,
"inq_last_6mths" : 0.20516234445402765,
"acc_open_past_24mths" : 0.4852503249658917,
"mort_acc" : 0.6673203078463711,
"mths_since_recent_bc" : 0.1962158305958366,
"num_rev_tl_bal_gt_0" : 0.12964661294856686,
"percent_bc_gt_75" : 0.04534570018290847
}
Basically, in the dictionary the Key is the name of the feature and the value is the coefficient of the logistic regression.
Please can anyone help me with the code?
Upvotes: 1
Views: 47
Reputation: 24940
I'm not sure you need pandas for this, but you do need to handle the namespaces in your xml.
Try something along these lines:
myDict = {}
#register the namespace
ns = {'xx': 'http://www.dmg.org/PMML-4_4'}
#you could collapse the next two into one line, but I believe it's clearer this way
rt = root.xpath('//xx:RegressionTable[.//xx:NumericPredictor]',namespaces=ns)[0]
nps = rt.xpath('./xx:NumericPredictor',namespaces=ns)
for np in nps:
myDict[np.attrib['name']]=np.attrib['coefficient']
myDict
The output should be your expected output.
Upvotes: 1