Reputation: 79
I am getting the following error and can't figure out why. I printed the input size of my torch before it gets fed to the CNN:
torch.Size([16, 3, 448, 448])
Here is my error message:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-116-bfa18f2a99fd> in <module>()
14 # Forward pass
15 print(images.shape)
---> 16 outputs = modelll(images.float())
17 loss = criterion(outputs, labels)
18
6 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight, bias)
441 _pair(0), self.dilation, self.groups)
442 return F.conv2d(input, weight, bias, self.stride,
--> 443 self.padding, self.dilation, self.groups)
444
445 def forward(self, input: Tensor) -> Tensor:
RuntimeError: Given groups=1, weight of size [32, 16, 5, 5], expected input[16, 3, 448, 448] to have 16 channels, but got 3 channels instead
I defined a CNN with 5 convolutional layers and two fully connected layers. I am feeding in batches of 16 and have resized the images to be (448x448). The images are colour, so I assumed an input of torch.Size([16, 3, 448, 448]) would be correct. Do I need to rearrange my tensor to be torch.Size([3, 448, 448, 16])? Just guessing here as I am fairly new to coding. I have looked online but haven't been able to figure it out. Any help would be greatly appreciated.
#Defining CNN
class ConvolutionalNet(nn.Module):
def __init__(self, num_classes=182):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer4 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer5 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc1 = nn.Linear(10*10*64, 240)
self.fc2 = nn.Linear(240, 182)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(x)
out = self.layer3(x)
out = self.layer4(x)
out = self.layer5(x)
out = out.reshape(out.size(0), -1)
out = F.relu(self.fc1((x)))
out = self.fc3(x)
return out
#Creating instance
modelll = ConvolutionalNet(num_classes).to(device)
modelll
num_classes = 182
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(modelll.parameters(), lr=3e-4)
#Training loop
modelll.train()
num_epochs = 5 # Set the model into `training` mode, because certain operators will perform differently during training and evaluation (e.g. dropout and batch normalization)
total_epochs = notebook.tqdm(range(num_epochs))
for epoch in total_epochs:
for i, (images, labels, m) in enumerate(train_loader):
# Move tensors to the configured device
images = images.to(device)
labels = labels.to(device)
# Forward pass
print(images.shape)
outputs = modelll(images.float())
loss = criterion(outputs, labels)
# Backward and optimize
loss.backward()
optimizer.step()
optimizer.zero_grad()
if (i + 1) % 10 == 0:
total_epochs.set_description(
'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(
epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
Upvotes: 0
Views: 813
Reputation: 3283
You haven't passed your output to the next layer's input, you're continually using the input. You should change your forward
call to:
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = out.reshape(out.size(0), -1)
out = F.relu(self.fc1((out)))
out = self.fc3(out)
return out
Upvotes: 1