Reputation: 87
I have a longitudinal data set in wide format, with > 2500 columns. Almost all columns begin with 'W1_' or 'W2_' to indicate the wave (ie, time point) of data collection. In the real data, there are > 2 waves. They look like this:
# Populate wide format data frame
person <- c(1, 2, 3, 4)
W1_resp_sex <- c(1, 2, 1, 2)
W2_resp_sex <- c(1, 2, 1, 2)
W1_edu <- c(1, 2, 3, 4)
W2_q_2_1 <- c(0, 1, 1, 0)
wide <- as.data.frame(cbind(person, W1_resp_sex, W2_resp_sex, W1_edu, W2_q_2_1))
wide
#> person W1_resp_sex W2_resp_sex W1_edu W2_q_2_1
#> 1 1 1 1 1 0
#> 2 2 2 2 2 1
#> 3 3 1 1 3 1
#> 4 4 2 2 4 0
I want to reshape from wide to long format so that the data look like this:
# Populate long data frame (this is how we want the wide data above to look after reshaping it)
person <- c(1, 1, 2, 2, 3, 3, 4, 4)
wave <- c(1, 2, 1, 2, 1, 2, 1, 2)
sex <- c(1, 1, 2, 2, 1, 1, 2, 2)
education <- c(1, NA, 2, NA, 3, NA, 4, NA)
q_2_1 <- c(NA, 0, NA, 1, NA, 1, NA, 0)
long_goal <- as.data.frame(cbind(person, wave, sex, education, q_2_1))
long_goal
#> person wave sex education q_2_1
#> 1 1 1 1 1 NA
#> 2 1 2 1 NA 0
#> 3 2 1 2 2 NA
#> 4 2 2 2 NA 1
#> 5 3 1 1 3 NA
#> 6 3 2 1 NA 1
#> 7 4 1 2 4 NA
#> 8 4 2 2 NA 0
To reshape the data, I tried pivot_longer(). How do I fix these issues? (I prefer not to use data.table.)
# Re-load wide format data
person <- c(1, 2, 3, 4)
W1_resp_sex <- c(1, 2, 1, 2)
W2_resp_sex <- c(1, 2, 1, 2)
W1_edu <- c(1, 2, 3, 4)
W2_q_2_1 <- c(0, 1, 1, 0)
wide <- as.data.frame(cbind(person, W1_resp_sex, W2_resp_sex, W1_edu, W2_q_2_1))
# Load package
pacman::p_load(tidyr)
# Reshape from wide to long
long <- wide %>%
pivot_longer(
cols = starts_with('W'),
names_to = 'Wave',
names_prefix = 'W',
names_pattern = '(.*)_',
values_to = 'sex',
values_drop_na = TRUE
)
long
#> # A tibble: 16 × 3
#> person Wave sex
#> <dbl> <chr> <dbl>
#> 1 1 1_resp 1
#> 2 1 2_resp 1
#> 3 1 1 1
#> 4 1 2_q_2 0
#> 5 2 1_resp 2
#> 6 2 2_resp 2
#> 7 2 1 2
#> 8 2 2_q_2 1
#> 9 3 1_resp 1
#> 10 3 2_resp 1
#> 11 3 1 3
#> 12 3 2_q_2 1
#> 13 4 1_resp 2
#> 14 4 2_resp 2
#> 15 4 1 4
#> 16 4 2_q_2 0
Created on 2022-09-19 by the reprex package (v2.0.1)
Upvotes: 1
Views: 1356
Reputation: 887961
We could reshape to 'long' with pivot_longer
, specifying the names_pattern
to capture substring from column names ((...)
) that matches with the same order of names_to
- i.e.. wave
column will get the digits (\\d+
) after the 'W', where as the .value
(value of the columns) correspond to the substring after the first _
in column names. Then, we could modify the resp_sex
and edu
by column names
library(dplyr)
library(tidyr)
pivot_longer(wide, cols = -person, names_to = c("wave", ".value"),
names_pattern = "^W(\\d+)_(.*)$") %>%
rename_with(~ c("sex", "education"), c("resp_sex", "edu"))
-output
# A tibble: 8 × 5
person wave sex education q_2_1
<dbl> <chr> <dbl> <dbl> <dbl>
1 1 1 1 1 NA
2 1 2 1 NA 0
3 2 1 2 2 NA
4 2 2 2 NA 1
5 3 1 1 3 NA
6 3 2 1 NA 1
7 4 1 2 4 NA
8 4 2 2 NA 0
Upvotes: 1
Reputation: 73802
You want to reshape the variables that are measured in both waves. You may find them table
ing the substring
of the names
without prefix.
v <- grep(names(which(table(substring(names(wide)[-1], 4)) == 2)), names(wide))
reshape2::melt(data=wide, id.vars=1, measure.vars=v)
# person variable value
# 1 1 W1_resp_sex 1
# 2 2 W1_resp_sex 2
# 3 3 W1_resp_sex 1
# 4 4 W1_resp_sex 2
# 5 1 W2_resp_sex 1
# 6 2 W2_resp_sex 2
# 7 3 W2_resp_sex 1
# 8 4 W2_resp_sex 2
Upvotes: 1