Reputation: 11
I am new to apache-spark and sedona. I have a csv file containing lat and lon column, and I am trying to join these with the geometry in overture maps buildings dataset. My goal is to get data related to all the lat-long pair i have in my csv file. Following is my code I have written in jupyter notebook in a dataproc cluster. If there is a better way to achieve this instead of joining lat-long pair with geometry in overture maps, please do let me know.
This is my code.
from sedona.spark import *
from pyspark.sql import functions as F
from pyspark.sql.types import DoubleType
import os
import time
# Initialize Sedona context with custom configuration
config = (
SedonaContext.builder().
config("spark.hadoop.fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider"). \
config("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider"). \
config('spark.jars.packages',
'org.apache.sedona:sedona-spark-3.4_2.12:1.5.1,'
'org.datasyslab:geotools-wrapper:1.5.1-28.2,'
'uk.co.gresearch.spark:spark-extension_2.12:2.11.0-3.4'). \
config('spark.jars.repositories', 'https://artifacts.unidata.ucar.edu/repository/unidata-all'). \
getOrCreate()
)
sedona = SedonaContext.create(config)
# Step 1: Load the buildings data with geometries from S3
DATA_LINK = (
"s3a://overturemaps-us-west-2/release/2024-09-18.0/"
)
df_building = sedona.read.format("geoparquet").load(DATA_LINK + "theme=buildings/type=building")
# Step 2: Load the CSV data with latitude and longitude columns
csv_path = "path/to/csv/file/"
csv_data = config.read.option("header", "true").csv(csv_path)
csv_data = csv_data.withColumn("Latitude", F.col("Latitude").cast(DoubleType())) \
.withColumn("Longitude", F.col("Longitude").cast(DoubleType()))
# Step 3: Convert Latitude and Longitude in the CSV data to Point geometry, and drop 'id' to avoid duplicate
csv_data = csv_data.withColumn("point_geometry", F.expr("ST_Point(Longitude, Latitude)")).drop("id")
# Step 4: Register DataFrames as temporary views for Sedona SQL operations
df_building.createOrReplaceTempView("buildings")
csv_data.createOrReplaceTempView("csv_data")
# Step 5: Perform the spatial join to find buildings that contain the points
query = """
SELECT csv.*, b.*
FROM csv_data AS csv
JOIN buildings AS b
ON ST_Contains(b.geometry, csv.point_geometry)
"""
joined_df = sedona.sql(query)
# Display two rows from the result to check if the join is successful
joined_df.select().show(2)
And I am getting the following error
ERROR ClusterManager: Could not initialize cluster nodes=[geospatial-cluster-w-3.us-central1-f.c.quick-doodad-428221-a1.internal, geospatial-cluster-w-0.us-central1-f.c.quick-doodad-428221-a1.internal, geospatial-cluster-w-2.us-central1-f.c.quick-doodad-428221-a1.internal, geospatial-cluster-w-1.us-central1-f.c.quick-doodad-428221-a1.internal] nodeHostName=geospatial-cluster-m.us-central1-f.c.quick-doodad-428221-a1.internal nodeHostAddress=10.128.0.22 currentNodeIndex=null
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
Cell In[1], line 65
62 joined_df = sedona.sql(query)
64 # Display two rows from the result to check if the join is successful
---> 65 joined_df.select().show(2)
67 # Step 6: Drop the 'point_geometry' column to avoid unsupported data type error
68
69 # # Convert geometry and point_geometry to WKT format to make them compatible with CSV
(...)
89
90 # Display two rows from the result to check if the join is successful
91 joined_df.select().show(2)
File /usr/lib/spark/python/pyspark/sql/dataframe.py:945, in DataFrame.show(self, n, truncate, vertical)
885 def show(self, n: int = 20, truncate: Union[bool, int] = True, vertical: bool = False) -> None:
886 """Prints the first ``n`` rows to the console.
887
888 .. versionadded:: 1.3.0
(...)
943 name | Bob
944 """
--> 945 print(self._show_string(n, truncate, vertical))
File /usr/lib/spark/python/pyspark/sql/dataframe.py:963, in DataFrame._show_string(self, n, truncate, vertical)
957 raise PySparkTypeError(
958 error_class="NOT_BOOL",
959 message_parameters={"arg_name": "vertical", "arg_type": type(vertical).__name__},
960 )
962 if isinstance(truncate, bool) and truncate:
--> 963 return self._jdf.showString(n, 20, vertical)
964 else:
965 try:
File /opt/conda/miniconda3/lib/python3.11/site-packages/py4j/java_gateway.py:1322, in JavaMember.__call__(self, *args)
1316 command = proto.CALL_COMMAND_NAME +\
1317 self.command_header +\
1318 args_command +\
1319 proto.END_COMMAND_PART
1321 answer = self.gateway_client.send_command(command)
-> 1322 return_value = get_return_value(
1323 answer, self.gateway_client, self.target_id, self.name)
1325 for temp_arg in temp_args:
1326 if hasattr(temp_arg, "_detach"):
File /usr/lib/spark/python/pyspark/errors/exceptions/captured.py:179, in capture_sql_exception.<locals>.deco(*a, **kw)
177 def deco(*a: Any, **kw: Any) -> Any:
178 try:
--> 179 return f(*a, **kw)
180 except Py4JJavaError as e:
181 converted = convert_exception(e.java_exception)
File /opt/conda/miniconda3/lib/python3.11/site-packages/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o125.showString.
: java.lang.NoClassDefFoundError: org/opengis/referencing/FactoryException
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryBase.toSpatialRDD(TraitJoinQueryBase.scala:41)
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryBase.toSpatialRDD$(TraitJoinQueryBase.scala:40)
at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.toSpatialRDD(RangeJoinExec.scala:38)
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryBase.toSpatialRddPair(TraitJoinQueryBase.scala:38)
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryBase.toSpatialRddPair$(TraitJoinQueryBase.scala:34)
at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.toSpatialRddPair(RangeJoinExec.scala:38)
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute(TraitJoinQueryExec.scala:62)
at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute$(TraitJoinQueryExec.scala:53)
at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.doExecute(RangeJoinExec.scala:38)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:195)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:246)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:243)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:191)
at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:527)
at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:455)
at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:454)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:498)
at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:51)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:751)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:195)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:246)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:243)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:191)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:364)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:498)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:483)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:61)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4332)
at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3314)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4322)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:547)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4320)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4320)
at org.apache.spark.sql.Dataset.head(Dataset.scala:3314)
at org.apache.spark.sql.Dataset.take(Dataset.scala:3537)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:280)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:315)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.lang.ClassNotFoundException: org.opengis.referencing.FactoryException
at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.java:581)
at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.java:178)
at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:527)
... 56 more
I can see two error, one that the cluster manager could not initialize cluster nodes, but when ssh into master node and tries to ping the workers the communication between them was not interrupted.
And the other error is Py4JJavaError: An error occurred while calling o125.showString. : java.lang.NoClassDefFoundError: org/opengis/referencing/FactoryException which suggests that some jar file is missing, I cannot find which one is.
Upvotes: 1
Views: 61