Reputation: 1949
Recently, I have been spending a lot of my time researching the topic of GPUs, and have came across several articles talking about how PC games are having a hard time staying ahead of the curve compared to console games due to limitations with the APIs. For example, on Xbox 360, it is my understanding that the games run in kernel mode, and that because the hardware will always be the same, the games can be programmed "closer to the metal" and the Directx api has less abstraction. On PC however, making the same number of draw calls with Direct-X or Opengl may take even more the 2 times the amount of time than on console due to switching to kernel mode and more layers of abstraction. I am interested in hearing possible solutions to this problem.
I have heard of a few solutions, such as programing directly on the hardware, but while (from what I understand), ATI has released the specifications of there low level API, nVidia keeps theirs secret, so that wouldn't work too well, not to mention the added development time of making different profiles.
Would programming an entire "software rendering" solution in Opencl and running that on a GPU be any better? My understanding is that games with a lot of draw calls are cpu bound and the calls are single threaded (on PC that is), so is Opencl a viable option?
So the question is: What are possible methods to increase the efficiency of, or even remove the need for, graphics APIs such as Opengl and Directx?
Upvotes: 3
Views: 1622
Reputation: 162297
APIs. For example, on Xbox 360, it is my understanding that the games run in kernel mode, and that because the hardware will always be the same, the games can be programmed "closer to the metal" and the Directx api has less abstraction. On PC however, making the same number of draw calls with Direct-X or Opengl may take even more the 2 times the amount of time than on console due to switching to kernel mode and more layers of abstraction.
The benefits of close-to-metal operation on consoles is largely overcompensated on PCs by their much larger CPU performance and available memory. Add to this that the HDDs of consoles are not nearly as fast as modern PC ones (SATA-1 vs SATA-3, or even just PATA) and many games get their contents from an optical drive which is even slower.
The PS3 360 for example offers only 256MiB memory for game logic and another 256MiB of RAM for graphics and more you don't get to work with. The X-Box 360 offers 512MiB of unified RAM, so you have to squeeze everthing into that. Now compare this with a low end PC, which easily comes with 2GiB of RAM for the program alone. And even the cheapest graphics cards offer at least 512MiB of RAM. A gamers machine will have several GiB of RAM, and the GPU will offer something between 1GiB to 2GiB.
This extremly limits the possibilites for a game developer and many PC gamers are mourning that so many games are "consoleish", yet their PCs could do so much more.
Upvotes: 0
Reputation: 10400
If you try to write a renderer in OpenCL, you will end up with something resembling OpenGL and DirectX. You will also most likely end up with something much slower than these APIs which were developed by many experts over many years. They are specialized to handle efficient rasterizing and use internal hooks not available to OpenCL. It could be a fun project, but definitely not a useful one.
Nicol Bolas already gave you some good techniques to increase the load of the GPU relative to the CPU. The final answer is of course that the best technique will depend on your specific domain and constraints. For example, if your rendering needs call for lots of pixel overdraw with complicated shaders and lots of textures, the CPU will not be the bottleneck. However, the most important general rule from with modern hardware is to limit the number of OpenGL calls made by better batching.
Upvotes: 0
Reputation: 474116
The general solution is to not make draw as many draw calls. Texture atlases via array textures, instancing, and various other techniques make this possible.
Or to just use the fact that modern computers have a lot more CPU performance than consoles. Or even better, make yourself GPU bound. After all, if your CPU is your bottleneck, then that means you have GPU power to spare. Use it.
OpenCL is not a "solution" to anything related to this. OpenCL has no access to any of the many things one would need to do to actually use a GPU to do rendering. In order to use OpenCL for graphics, you would have to not use the GPU's rasterizer/clipper, it's specialized buffers for transferring information from stage to stage, the post T&L cache, or the blending/depth comparison/stencil/etc hardware. All of that is fixed function and extremely fast and specialized. And completely unavailable to OpenCL.
And even then, it doesn't actually make it not CPU bound anymore. You still have to marshal what you're rendering and so forth. And you probably won't have access to the graphics FIFO, so you'll have to find another way to feed your shaders.
Or, to put it another way, this is a "problem" that doesn't need solving.
Upvotes: 3