Gabriel
Gabriel

Reputation: 3045

Why is binary represented in octects?

I've been looking for the answer on google and can't seem to find it. But binary is represented in bytes/octets, 8 bits. So the character a (I think) is 01100010, and the word hey is

01101000 
01100101 
01111001 

So my question is, why 8? Is this just a good number for the computer to work with? And I've noticed how 32 bit/ 62 bit computers are all multiples of eight... so does this all have to do with how the first computers were made?

Sorry if this question doesn't meet the Q/A standards... its not code related but I can't think of anywhere else to ask it.

Upvotes: 3

Views: 242

Answers (3)

psihodelia
psihodelia

Reputation: 30502

One reason why we use 8-bit bytes is because the complexity of the world around us has a definitive structure. On the scale of human beings, observed physical world has finite number of distinctive states and patterns. Our innate restricted abilities to classify information, to distinguish order from chaos, finite amount of memory in our brains - these all are the reasons why we choose [2^8...2^64] states to be enough to satisfy our everyday basic computational needs.

Upvotes: 0

Borealid
Borealid

Reputation: 98489

The answer is really "historical reasons".

Computer memory must be addressable at some level. When you ask your RAM for information, you need to specify which information you want - and it will return that to you. In theory, one could produce bit-addressable memory: you ask for one bit, you get one bit back.

But that wouldn't be very efficient, since the interface connecting the processor to the memory needs to be able to convey enough information to specify which address it wants. The smaller the granularity of access, the more wires you need (or the more pushes along the same number of wires) before you've given an accurate enough address for retrieval. Also, returning one bit multiple times is less efficient than returning multiple bits one time (side note: true in general. This is a serial-vs-parallel debate, and due to reduced system complexity and physics, serial interfaces can generally run faster. But overall, more bits at once is more efficient).

Secondly, the total amount of memory in the system is limited in part by the size of the smallest addressable block, since unless you used variably-sized memory addresses, you only have a finite number of addresses to work with - but each address represents a number of bits which you get to choose. So a system with logically byte-addressable memory can hold eight times the RAM of one with logically bit-addressable memory.

So, we use memory logically addressable at less fine levels (although physically no RAM chip will return just one byte). Only powers of two really make sense for this, and historically the level of access has been a byte. It could just as easily be a nibble or a two-byte word, and in fact older systems did have smaller chunks than eight bits.

Now, of course, modern processors mostly eat memory in cache-line-sized increments, but our means of expressing groupings and dividing the now-virtual address space remained, and the smallest amount of memory which a CPU instruction can access directly is still an eight-bit chunk. The machine code for the CPU instructions (and/or the paths going into the processor) would have to grow the same way the number of wires connecting to the memory controller would in order for the registers to be addressable - it's the same problem as with the system memory accessibility I was talking about earlier.

Upvotes: 2

Bry6n
Bry6n

Reputation: 1979

"In the early 1960s, AT&T introduced digital telephony first on long-distance trunk lines. These used the 8-bit µ-law encoding. This large investment promised to reduce transmission costs for 8-bit data. The use of 8-bit codes for digital telephony also caused 8-bit data octets to be adopted as the basic data unit of the early Internet"

http://en.wikipedia.org/wiki/Byte

Not sure how true that is. It seems that that's just the symbol and style adopted by the IEEE, though.

Upvotes: 2

Related Questions