Reputation: 2845
I have a dataframe with categorical attributes where the index contains duplicates. I am trying to find the sum of each possible combination of index and attribute.
x = pd.DataFrame({'x':[1,1,3,3],'y':[3,3,5,5]},index=[11,11,12,12])
y = x.stack()
print(y)
print(y.groupby(level=[0,1]).sum())
output
11 x 1
y 3
x 1
y 3
12 x 3
y 5
x 3
y 5
dtype: int64
11 x 1
y 3
x 1
y 3
12 x 3
y 5
x 3
y 5
dtype: int64
The stack and group by sum are just the same.
However, the one I expect is
11 x 2
11 y 6
12 x 6
12 y 10
EDIT 2:
x = pd.DataFrame({'x':[1,1,3,3],'y':[3,3,5,5]},index=[11,11,12,12])
y = x.stack().groupby(level=[0,1]).sum()
print(y.groupby(level=[0,1]).sum())
output:
11 x 1
y 3
x 1
y 3
12 x 3
y 5
x 3
y 5
dtype: int64
EDIT3: An issue has been logged https://github.com/pydata/pandas/issues/10417
Upvotes: 5
Views: 9091
Reputation: 7994
sum
allows you to specify the levels to sum over in a MultiIndex data frame.
x = pd.DataFrame({'x':[1,1,3,3],'y':[3,3,5,5]},index=[11,11,12,12])
y = x.stack()
y.sum(level=[0,1])
11 x 2
y 6
12 x 6
y 10
Upvotes: 5
Reputation: 10833
With pandas 0.16.2 and Python 3, I was able to get the correct result via:
x.stack().reset_index().groupby(['level_0','level_1']).sum()
Which produces:
0
level_0 level_1
11 x 2
y 6
12 x 6
y 10
You can then change the index and column names to more desirable ones using reindex()
and columns
.
Based on my research, I agree that the failure of the original approach appears to be a bug. I think the bug is on Series
, which is what x.stack()
produces. My workaround is to turn the Series
into a DataFrame
via reset_index()
. In this case the DataFrame
does not have a MultiIndex
anymore - I'm just grouping on labeled columns.
To make sure that grouping and summing works on a DataFrame
with a MultiIndex
, you can try this to get the same correct output:
x.stack().reset_index().set_index(['level_0','level_1'],drop=True).\
groupby(level=[0,1]).sum()
Either of these workarounds should take care of things until the bug is resolved.
I wonder if the bug has something to do with the MultiIndex
instances that are created on a Series
vs. a DataFrame
. For example:
In[1]: obj = x.stack()
type(obj)
Out[1]: pandas.core.series.Series
In[2]: obj.index
Out[2]: MultiIndex(levels=[[11, 11, 12, 12], ['x', 'y']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]])
vs.
In[3]: obj = x.stack().reset_index().set_index(['level_0','level_1'],drop=True)
type(obj)
Out[3]: pandas.core.frame.DataFrame
In[4]: obj.index
Out[4]: MultiIndex(levels=[[11, 12], ['x', 'y']],
labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['level_0', 'level_1'])
Notice how the MultiIndex
on the DataFrame
describes the levels more correctly.
Upvotes: 5
Reputation: 719
Using Pandas 0.15.2, you just need one more iteration of groupby
x = pd.DataFrame({'x':[1,1,3,3],'y':[3,3,5,5]},index=[11,11,12,12])
y = x.stack().groupby(level=[0,1]).sum()
print(y.groupby(level=[0,1]).sum())
prints
11 x 2
y 6
12 x 6
y 10
Upvotes: 3