Reputation: 5299
I have a dataframe like this.
df1=pd.DataFrame({"A":np.random.randint(1,10,4),"B":np.random.randint(1,10,4),"C":list('abba')})
df1.index.name="first"
df2=pd.DataFrame({"A":np.random.randint(1,10,5),"B":np.random.randint(1,10,5),"C":list('aaabb')})
df2.index.name="second"
df=pd.concat([df1,df2], keys=['first', 'second'])
df
A B C
first 0 6 5 a
1 2 2 b
2 1 6 b
3 6 9 a
second 0 6 6 a
1 9 9 a
2 8 4 a
3 7 2 b
4 9 8 b
I would like to get grouping and summing result like this. the (key= column "C")
first second
A B A B
a 15 14 23 19
b 3 8 16 10
How can I get this result ?
Upvotes: 2
Views: 59
Reputation: 294278
You can use groupby
with a list of things that look like arrays. You want to use the first level of the index and column 'C'
.
df.groupby([df.index.get_level_values(0), df.C]).sum() \
.unstack().stack(0).T.rename_axis(None)
Upvotes: 2
Reputation: 16619
One way to do this would be:
In [126]: df1=pd.DataFrame({"A":np.random.randint(1,10,4),"B":np.random.randint(1,10,4),"C":list('abba')})
In [127]: df2=pd.DataFrame({"A":np.random.randint(1,10,5),"B":np.random.randint(1,10,5),"C":list('aaabb')})
In [128]: df1
Out[128]:
A B C
0 7 9 a
1 1 3 b
2 7 7 b
3 1 2 a
In [129]: df2
Out[129]:
A B C
0 3 1 a
1 3 1 a
2 7 3 a
3 9 7 b
4 9 1 b
In [130]: df = pd.concat({"first": df1.groupby('C').sum(), "second": df2.groupby('C').sum()}, axis = 1)
In [131]: del df.index.name
In [132]: df
Out[132]:
first second
A B A B
a 8 11 13 5
b 8 10 18 8
Upvotes: 0