Reputation: 379
I was trying to get a cubic root in java using Math.pow(n, 1.0/3)
but because it divides doubles, it doesn't return the exact answer. For example, with 125, this gives 4.9999999999. Is there a work-around for this? I know there is a cubic root function but I'd like to fix this so I can calculate higher roots.
I would not like to round because I want to know whether a number has an integer root by doing something like this: Math.pow(n, 1.0 / 3) % ((int) Math.pow(n, 1.0 / 3))
.
Upvotes: 26
Views: 37429
Reputation: 494
I'd go for implementing my own function to do this, possibly based on this method.
Upvotes: 1
Reputation: 339
I'm using this nth_root algorithm, which also provide the remainder :
public static BigInteger[] sqrt(final BigInteger n) {
final BigInteger[] res = {ZERO, n,};
BigInteger a, b;
assert (n.signum() > 0);
a = ONE.shiftLeft(n.bitLength() & ~1);
while (!a.equals(ZERO)) {
b = res[0].add(a);
res[0] = res[0].shiftRight(1);
if (res[1].compareTo(b) >= 0) {
res[1] = res[1].subtract(b);
res[0] = res[0].add(a);
}
a = a.shiftRight(2);
}
return res;
}
public static BigInteger[] nth_root(BigInteger n, final int nth) {
final BigInteger[] res;
switch(nth){
case 0 : res = new BigInteger[]{n.equals(ONE) ? ONE : ZERO, ZERO} ; break;
case 1 : res = new BigInteger[]{n, ZERO}; break;
case 2 : res = sqrt(n); break;
default:
int sign = n.signum() ;
n = n.abs();
res = new BigInteger[]{n.shiftLeft((n.bitLength() + nth - 1) / nth), n};
while(res[1].compareTo(res[0])<0) {
res[0] = res[1];
res[1] = BigInteger.valueOf(nth-1).multiply(res[1]).add(n.divide(res[1].pow(nth - 1))).divide(BigInteger.valueOf(nth));
}
res[1] = res[0].pow(nth);
res[1] = n.subtract(res[1]);
if (sign < 0 && (nth & 1) == 1) {
res[0] = res[0].negate();
res[1] = res[1].negate();
} else assert (sign > 0);
}
return res ;
}
}
Upvotes: 0
Reputation: 1436
Find nth root Using binary search method. Here is the way to find nth root with any precision according to your requirements.
import java.util.Scanner;
public class FindRoot {
public static void main(String[] args) {
try (Scanner scanner = new Scanner(System.in)) {
int testCase = scanner.nextInt();
while (testCase-- > 0) {
double number = scanner.nextDouble();
int root = scanner.nextInt();
double precision = scanner.nextDouble();
double result = findRoot(number, root, precision);
System.out.println(result);
}
}
}
private static double findRoot(double number, int root, double precision) {
double start = 0;
double end = number / 2;
double mid = end;
while (true) {
if (precision >= diff(number, mid, root)) {
return mid;
}
if (pow(mid, root) > number) {
end = mid;
} else {
start = mid;
}
mid = (start + end) / 2;
}
}
private static double diff(double number, double mid, int n) {
double power = pow(mid, n);
return number > power ? number - power : power - number;
}
private static double pow(double number, int pow) {
double result = number;
while (pow-- > 1) {
result *= number;
}
return result;
}
}
Upvotes: 0
Reputation: 1436
Here is the solution without using Java's Math.pow function. It will give you nearly nth root
public class NthRoot {
public static void main(String[] args) {
try (Scanner scanner = new Scanner(System.in)) {
int testcases = scanner.nextInt();
while (testcases-- > 0) {
int root = scanner.nextInt();
int number = scanner.nextInt();
double rootValue = compute(number, root) * 1000.0 / 1000.0;
System.out.println((int) rootValue);
}
} catch (Exception e) {
e.printStackTrace();
}
}
private static double compute(int number, int root) {
double xPre = Math.random() % 10;
double error = 0.0000001;
double delX = 2147483647;
double current = 0.0;
while (delX > error) {
current = ((root - 1.0) * xPre + (double) number / Math.pow(xPre, root - 1)) / (double) root;
delX = Math.abs(current - xPre);
xPre = current;
}
return current;
}
Upvotes: 2
Reputation: 124
You can use some tricks come from mathematics field, to havemore accuracy. Like this one x^(1/n) = e^(lnx/n).
Check the implementation here: https://www.baeldung.com/java-nth-root
Upvotes: 1
Reputation:
It's a pretty ugly hack, but you could reach a few of them through indenting.
System.out.println(Math.sqrt(Math.sqrt(256)));
System.out.println(Math.pow(4, 4));
System.out.println(Math.pow(4, 9));
System.out.println(Math.cbrt(Math.cbrt(262144)));
Result:
4.0
256.0
262144.0
4.0
Which will give you every n^3th cube and every n^2th root.
Upvotes: 0
Reputation: 1
Well this is a good option to choose in this situation. You can rely on this-
System.out.println(" ");
System.out.println(" Enter a base and then nth root");
while(true)
{
a=Double.parseDouble(br.readLine());
b=Double.parseDouble(br.readLine());
double negodd=-(Math.pow((Math.abs(a)),(1.0/b)));
double poseve=Math.pow(a,(1.0/b));
double posodd=Math.pow(a,(1.0/b));
if(a<0 && b%2==0)
{
String io="\u03AF";
double negeve=Math.pow((Math.abs(a)),(1.0/b));
System.out.println(" Root is imaginary and value= "+negeve+" "+io);
}
else if(a<0 && b%2==1)
System.out.println(" Value= "+negodd);
else if(a>0 && b%2==0)
System.out.println(" Value= "+poseve);
else if(a>0 && b%2==1)
System.out.println(" Value= "+posodd);
System.out.println(" ");
System.out.print(" Enter '0' to come back or press any number to continue- ");
con=Integer.parseInt(br.readLine());
if(con==0)
break;
else
{
System.out.println(" Enter a base and then nth root");
continue;
}
}
Upvotes: 0
Reputation: 37645
I wrote this method to compute floor(x^(1/n))
where x
is a non-negative BigInteger
and n
is a positive integer. It was a while ago now so I can't explain why it works, but I'm reasonably confident that when I wrote it I was happy that it's guaranteed to give the correct answer reasonably quickly.
To see if x
is an exact n-th
power you can check if the result raised to the power n
gives you exactly x
back again.
public static BigInteger floorOfNthRoot(BigInteger x, int n) {
int sign = x.signum();
if (n <= 0 || (sign < 0))
throw new IllegalArgumentException();
if (sign == 0)
return BigInteger.ZERO;
if (n == 1)
return x;
BigInteger a;
BigInteger bigN = BigInteger.valueOf(n);
BigInteger bigNMinusOne = BigInteger.valueOf(n - 1);
BigInteger b = BigInteger.ZERO.setBit(1 + x.bitLength() / n);
do {
a = b;
b = a.multiply(bigNMinusOne).add(x.divide(a.pow(n - 1))).divide(bigN);
} while (b.compareTo(a) == -1);
return a;
}
To use it:
System.out.println(floorOfNthRoot(new BigInteger("125"), 3));
Edit Having read the comments above I now remember that this is the Newton-Raphson method for n-th roots. The Newton-Raphson method has quadratic convergence (which in everyday language means it's fast). You can try it on numbers which have dozens of digits and you should get the answer in a fraction of a second.
You can adapt the method to work with other number types, but double
and BigDecimal
are in my view not suited for this kind of thing.
Upvotes: 1
Reputation: 137064
Since it is not possible to have arbitrary-precision calculus with double
, you have three choices:
double
value is an integer or not.double
you have is a correct result.BigDecimal
object, which supports arbitrary-precision double values.private static boolean isNthRoot(int value, int n, double precision) {
double a = Math.pow(value, 1.0 / n);
return Math.abs(a - Math.round(a)) < precision; // if a and round(a) are "close enough" then we're good
}
The problem with this approach is how to define "close enough". This is a subjective question and it depends on your requirements.
private static boolean isNthRoot(int value, int n) {
double a = Math.pow(value, 1.0 / n);
return Math.pow(Math.round(a), n) == value;
}
The advantage of this method is that there is no need to define a precision. However, we need to perform another pow
operation so this will affect performance.
There is no built-in method to calculate a double power of a BigDecimal. This question will give you insight on how to do it.
Upvotes: 11
Reputation: 22214
The Math.round function will round to the nearest long value that can be stored to a double. You could compare the 2 results to see if the number has an integer cubic root.
double dres = Math.pow(125, 1.0 / 3.0);
double ires = Math.round(dres);
double diff = Math.abs(dres - ires);
if (diff < Math.ulp(10.0)) {
// has cubic root
}
If that's inadequate you can try implementing this algorithm and stop early if the result doesn't seem to be an integer.
Upvotes: 6