Reputation: 97601
Where 'absent' can mean either nan
or np.masked
, whichever is easiest to implement this with.
For instance:
>>> from numpy import nan
>>> do_it([1, nan, nan, 2, nan, 3, nan, nan, 4, 3, nan, 2, nan])
array([1, 1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 2, 2])
# each nan is replaced with the first non-nan value before it
>>> do_it([nan, nan, 2, nan])
array([nan, nan, 2, 2])
# don't care too much about the outcome here, but this seems sensible
I can see how you'd do this with a for loop:
def do_it(a):
res = []
last_val = nan
for item in a:
if not np.isnan(item):
last_val = item
res.append(last_val)
return np.asarray(res)
Is there a faster way to vectorize it?
Upvotes: 1
Views: 221
Reputation: 97601
Working from @Benjamin's deleted solution, everything is great if you work with indices
def do_it(data, valid=None, axis=0):
# normalize the inputs to match the question examples
data = np.asarray(data)
if valid is None:
valid = ~np.isnan(data)
# flat array of the data values
data_flat = data.ravel()
# array of indices such that data_flat[indices] == data
indices = np.arange(data.size).reshape(data.shape)
# thanks to benjamin here
stretched_indices = np.maximum.accumulate(valid*indices, axis=axis)
return data_flat[stretched_indices]
Comparing solution runtime:
>>> import numpy as np
>>> data = np.random.rand(10000)
>>> %timeit do_it_question(data)
10000 loops, best of 3: 17.3 ms per loop
>>> %timeit do_it_mine(data)
10000 loops, best of 3: 179 µs per loop
>>> %timeit do_it_user(data)
10000 loops, best of 3: 182 µs per loop
# with lots of nans
>>> data[data > 0.25] = np.nan
>>> %timeit do_it_question(data)
10000 loops, best of 3: 18.9 ms per loop
>>> %timeit do_it_mine(data)
10000 loops, best of 3: 177 µs per loop
>>> %timeit do_it_user(data)
10000 loops, best of 3: 231 µs per loop
So both this and @user2357112's solution blow the solution in the question out of the water, but this has the slight edge over @user2357112 when there are high numbers of nan
s
Upvotes: 1
Reputation: 280973
cumsum
ming over an array of flags provides a good way to determine which numbers to write over the NaNs:
def do_it(x):
x = np.asarray(x)
is_valid = ~np.isnan(x)
is_valid[0] = True
valid_elems = x[is_valid]
replacement_indices = is_valid.cumsum() - 1
return valid_elems[replacement_indices]
Upvotes: 1
Reputation: 11860
Assuming there are no zeros in your data (in order to use numpy.nan_to_num
):
b = numpy.maximum.accumulate(numpy.nan_to_num(a))
>>> array([ 1., 1., 1., 2., 2., 3., 3., 3., 4., 4.])
mask = numpy.isnan(a)
a[mask] = b[mask]
>>> array([ 1., 1., 1., 2., 2., 3., 3., 3., 4., 3.])
EDIT: As pointed out by Eric, an even better solution is to replace nans with -inf:
mask = numpy.isnan(a)
a[mask] = -numpy.inf
b = numpy.maximum.accumulate(a)
a[mask] = b[mask]
Upvotes: 1