Reputation:
I have this shiny app for K-Means Clustering:
ui <- navbarPage("My Application",
tabPanel("K-Means", icon = icon("folder-open"),
sidebarLayout(
sidebarPanel(
sliderInput("num_centers",
label = "Select K",
min = 2,
max = 10,
value = 2),
checkboxInput("plotly_checkbox", label = "Interactivity with plotly", value = TRUE)
),
mainPanel(
plotOutput("kmeans")
)
)
)
)
server <- function(input, output, session) {
output$kmeans <- renderPlot({
# Require number of centers
req(input$num_centers)
# K-Means Algorithm
k_centers <- reactive({kmeans(x = harvard_scaled, centers = input$num_centers)})
harvard_cluster <- augment(k_centers(), harvard_processed)
# Static Plot
harvard_cluster %>%
janitor::clean_names() %>%
ggplot(aes(nevents, nplay_video, color = cluster)) +
geom_point() +
labs(x = "# of interactions with the course",
y = "# of play video events",
color = "Cluster") +
xlim(0, 52000) +
ylim(0, 12500) +
ggtitle(paste("K-Means Clustering of students where", "K =", input$num_centers))
})
}
# Create Shiny app object
shinyApp(ui = ui, server = server)
plotly
graph by using checkboxInput
.ifelse
to no avail because one is a static graph and needs renderPlot
and the other is an interactive graph and needs renderPlotly
.Does anyone know how to enable the user to select whether app shows plotly
or ggplot
graph?
EDIT: Example Dataset (Note: This is a dummy dataset different from the one I used to plot the above):
structure(c(0.150884824647657, 0.150884824647657, 0.449543446630647,
0.217253407310543, -0.230734525663942, -0.330287399658272, -0.960788934955696,
0.715017777282194, 0.449543446630647, -0.147773797335334, -0.380063836655437,
-0.612353875975541, -0.463024564984046, -0.811459623964201, -1.60788261591884,
-1.60788261591884, -0.89442035229281, 2.04238943053993, 1.7105465172255,
2.29127161552575, 0.233845552976265, -0.761683186967036, -0.811459623964201,
-1.12671039161291, -0.147773797335334, 1.19619000158812, 0.980492107933741,
1.7105465172255, -0.711906749969871, -0.0648130690067253, -0.844643915295645,
0.217253407310543, -0.570619818667904, -0.570619818667904, -0.990182090888924,
0.22009369436402, 1.04308122833602, -0.046166978391628, 1.04308122833602,
-0.677930938293665, -0.725535119180281, -0.509299178881755, -0.509299178881755,
0.363713087547369, 0.363713087547369, 0.363713087547369, 1.94675381465822,
1.84993175183798, 1.68856164713759, -1.226589294275, -1.25079480998006,
-1.28790993406115, -0.892553177545187, 0.704204008465197, 0.591244935174923,
0.962396175985825, 1.36582143773681, -1.22416874270449, -0.890939476498183,
-1.09426580842068, 0.970464681220845, -0.691647397193198, 0.567039419469864,
-0.885291522833669), .Dim = c(32L, 2L), .Dimnames = list(c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant", "Duster 360", "Merc 240D", "Merc 230", "Merc 280",
"Merc 280C", "Merc 450SE", "Merc 450SL", "Merc 450SLC", "Cadillac Fleetwood",
"Lincoln Continental", "Chrysler Imperial", "Fiat 128", "Honda Civic",
"Toyota Corolla", "Toyota Corona", "Dodge Challenger", "AMC Javelin",
"Camaro Z28", "Pontiac Firebird", "Fiat X1-9", "Porsche 914-2",
"Lotus Europa", "Ford Pantera L", "Ferrari Dino", "Maserati Bora",
"Volvo 142E"), c("mpg", "disp")), "`scaled:center`" = c(mpg = 20.090625,
disp = 230.721875), "`scaled:scale`" = c(mpg = 6.0269480520891,
disp = 123.938693831382))
Upvotes: 1
Views: 151
Reputation: 26333
One simple solution is to use a conditionalPanel()
, if that works for you. Here's an example
library(shiny)
library(ggplot2)
library(plotly)
ui <- fluidPage(
checkboxInput("typeplotly", "Use interactivity", FALSE),
conditionalPanel("input.typeplotly == true", plotlyOutput("plotly")),
conditionalPanel("input.typeplotly == false", plotOutput("plot"))
)
server <- function(input, output, session) {
output$plotly <- renderPlotly({
ggplotly(ggplot(mtcars, aes(mpg, wt)) + geom_point())
})
output$plot <- renderPlot({
ggplot(mtcars, aes(mpg, wt)) + geom_point()
})
}
shinyApp(ui, server)
Upvotes: 1