Reputation: 1972
This question is a variation of the question asked here.
I have the following kind of data:
library(tidyverse)
library(lubridate)
data <- tibble(a = c(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3),
b = c('x', 'y', 'z', 'z', 'z', 'z', 'z', 'z', 'z', 'z', 'z'),
c = c('ps', 'ps', 'qs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs'),
d = c(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100),
strt = ymd(c('2019-03-20', '2020-01-01', '2018-01-02', '2020-05-01', '2016-01-01', '2020-03-01', '2020-01-01', '2020-01-01', '2020-01-02', '2020-01-01', '2019-10-01')),
fnsh = ymd(c('3019-03-20', '3020-01-01', '3018-01-02', '2020-06-01', '2016-05-01', '2020-04-01', '2020-06-10', '2020-06-10', '2020-06-10', '2020-06-18', '2019-11-01')))
I am doing a group-wise operation based on the variables a, b and c (i.e. data %>% group_by(a, b, c))
. For each group, the rows with genuine starting dates within the last year are of interest. A strt is genuine if it is not bigger than the strt and smaller than or equal to the fnsh of any other row in the group. A strt can thus be genuine even though there is another strt in the group with the same value.
The challenge is to make a selective sum of the genuine strts within each group. In making that sum, a collection of identical genuine strts within a group should count as one.
The following identifies the genuine starting dates, but it does not provide the sum:
library(tidyverse)
data %>%
group_by(a, b, c) %>%
mutate(begin = +(map_lgl(strt, ~ sum(strt < .x & .x <= fnsh) == 0) &
strt > today(tzone = 'CET') - years(1) &
strt <= today(tzone = 'CET')))
The above returns:
a b c d strt fnsh begin
<dbl> <chr> <chr> <dbl> <date> <date> <int>
1 1 x ps 100 2019-03-20 3019-03-20 0
2 1 y ps 200 2020-01-01 3020-01-01 1
3 2 z qs 300 2018-01-02 3018-01-02 0
4 3 z rs 400 2020-05-01 2020-06-01 0
5 3 z rs 500 2016-01-01 2016-05-01 0
6 3 z rs 600 2020-03-01 2020-04-01 0
7 3 z rs 700 2020-01-01 2020-06-10 1
8 3 z rs 800 2020-01-01 2020-06-10 1
9 3 z rs 900 2020-01-02 2020-06-10 0
10 3 z rs 1000 2020-01-01 2020-06-18 1
11 3 z rs 1100 2019-10-01 2019-11-01 1
What is needed is something like:
a b c d strt fnsh groupBeginSum
<dbl> <chr> <chr> <dbl> <date> <date> <int>
1 1 x ps 100 2019-03-20 3019-03-20 0
2 1 y ps 200 2020-01-01 3020-01-01 1
3 2 z qs 300 2018-01-02 3018-01-02 0
4 3 z rs 400 2020-05-01 2020-06-01 2
5 3 z rs 500 2016-01-01 2016-05-01 2
6 3 z rs 600 2020-03-01 2020-04-01 2
7 3 z rs 700 2020-01-01 2020-06-10 2
8 3 z rs 800 2020-01-01 2020-06-10 2
9 3 z rs 900 2020-01-02 2020-06-10 2
10 3 z rs 1000 2020-01-01 2020-06-18 2
11 3 z rs 1100 2019-10-01 2019-11-01 2
How to make a sum for each group that counts a collection of identical genuine strts as one?
Upvotes: 0
Views: 62
Reputation: 13680
The task is to count the number of unique genuine dates. We can use n_distinct
on the filtered vector of strt
: n_distinct(strt[genuine])
Note that I ditched the type casting of the genuine
columns (called begin
in your data) as I would have to re-cast to logical afterward.
Hope this helps:
library(tidyverse)
library(lubridate)
df %>%
group_by(a, b, c) %>%
mutate(genuine = map_lgl(strt, ~ sum(strt < .x & .x <= fnsh) == 0) &
strt > today(tzone = 'CET') - years(1) &
strt <= today(tzone = 'CET'),
groupBeginSum = n_distinct(strt[genuine]))
#> # A tibble: 11 x 8
#> # Groups: a, b, c [4]
#> a b c d strt fnsh genuine groupBeginSum
#> <dbl> <chr> <chr> <dbl> <date> <date> <lgl> <int>
#> 1 1 x ps 100 2019-03-20 3019-03-20 FALSE 0
#> 2 1 y ps 200 2020-01-01 3020-01-01 TRUE 1
#> 3 2 z qs 300 2018-01-02 3018-01-02 FALSE 0
#> 4 3 z rs 400 2020-05-01 2020-06-01 FALSE 2
#> 5 3 z rs 500 2016-01-01 2016-05-01 FALSE 2
#> 6 3 z rs 600 2020-03-01 2020-04-01 FALSE 2
#> 7 3 z rs 700 2020-01-01 2020-06-10 TRUE 2
#> 8 3 z rs 800 2020-01-01 2020-06-10 TRUE 2
#> 9 3 z rs 900 2020-01-02 2020-06-10 FALSE 2
#> 10 3 z rs 1000 2020-01-01 2020-06-18 TRUE 2
#> 11 3 z rs 1100 2019-10-01 2019-11-01 TRUE 2
Created on 2020-06-18 by the reprex package (v0.3.0)
Data:
df <- tibble(a = c(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3),
b = c('x', 'y', 'z', 'z', 'z', 'z', 'z', 'z', 'z', 'z', 'z'),
c = c('ps', 'ps', 'qs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs', 'rs'),
d = c(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100),
strt = ymd(c('2019-03-20', '2020-01-01', '2018-01-02', '2020-05-01', '2016-01-01', '2020-03-01', '2020-01-01', '2020-01-01', '2020-01-02', '2020-01-01', '2019-10-01')),
fnsh = ymd(c('3019-03-20', '3020-01-01', '3018-01-02', '2020-06-01', '2016-05-01', '2020-04-01', '2020-06-10', '2020-06-10', '2020-06-10', '2020-06-18', '2019-11-01')))
Upvotes: 1