VHDL: Std_Logic input stored in integer issue

I have the following problem:

I have a PC which gives inputs to my SPARTAN 3AN FPGA and I wish to fetch those inputs, put them in a std_logic_vector, then convert them into integer. The instructions are divided in "n" instructions with 32 bits each. I need the first three bits be put in one integer, the next 28 in another, and the last is a "Last instruction flag". So, I have two arrays of 100 integers in which I would be putting the instructions (100 is the limit). If the "Last instruction flag" is one, than the entire operation should stop.

The program didn't synthesize properly, so I made a simulation of it. And I found the problem, but I don't know how to solve it, so I need your help. Here is the code and the simulation output:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.all;


entity BinaryDecimalConv is
end BinaryDecimalConv;

architecture Behavioral of BinaryDecimalConv is

    type int_array is array (100 downto 0) of integer;

    signal clkcnt: integer :=0;
    signal fbaud: integer;
    signal lastnumflag: std_logic:='0';
    signal clk: std_logic;
    signal PLCinput: std_logic;
    signal init: std_logic;
    signal BusyIN: std_logic;
    signal BusyOutSignal: std_logic;
    signal InnerBusyOut: std_logic;
    signal cnt: integer :=0;
    signal fbaut: integer :=0;
    signal pre_int: std_logic_vector (31 downto 0) := (others => '0');
    signal pre_spec_num: int_array := (others =>0);
    signal cylinder: int_array := (others => 0);
    signal InnerNumLength: integer:=0;
    signal num_length: integer:=0;

begin

CLOCKK: Process is
begin
    clk<='0';
    wait for 10 ns;
    clk<='1';
    wait for 10 ns;
end process CLOCKK;

fbaud <=5208;
BusyIN <='0';
init <='0';

PLC: Process is
    variable PrePLC: std_logic_vector(159 downto 0):="1010101010101010101010101001010010101010101010101010101010010100101010101010101010101010100101001010101010101010101010101001010010101010101010101010101010010101"; -- 1 with 100, 5 with 200, 5 2ith 200, 3 with 300, 4 with 750
begin
    PLCinput<=PrePLC(159);
    PrePLC:= PrePLC(158 downto 1) & '0';
    wait for 104166 ns;
end process;    


LastNum: process (LastNumFlag) is
    begin
    if LastNumFlag = '1' then
        BusyOutSignal <='1';
        InnerBusyOut <='1';
    else
        BusyOutSignal <='0';
        InnerBusyOut <='0';
    end if;
    end process LastNum;

DecoderAndAcquirer: process (PLCinput, BusyIN, InnerBusyOut,clk) is
begin

    if (clk'event and clk='1') then                                                         -- If rising edge on clock
        if ((BusyIN='0') and (InnerBusyOut='0') and (init='0')) then                        -- Check if FPGA and PLC are ready to exchange information and if init is done
            if (clkcnt = fbaud/2)                    then                                   --  If clkcnt is equal to half of the duration of the input bit then
                pre_int(31) <= PLCinput;                                                    -- Initialize the last digit of pre_int
                cnt <= cnt+1;                                                               -- Incrementing cnt => going towards bit 2
                clkcnt <=clkcnt+1;                                                          -- Incrementing clkcnt so you can exit this block
                if (cnt<32) then                                                            -- Checking if not last bit
                    pre_int <= '0' & pre_int(31 downto 1);                                  -- If not last bit, shift number to right
                else                                                                        -- else
                    cnt <=0;                                                                -- reset cnt to start with next instruction
                    if (pre_int(0)='1') then                                                -- Check if last digit is one
                        LastNumFlag <= '1';                                                 -- If last digit is one, stop acquiring instructions
                    else
                        LastNumFlag <='0';
                    end if;
                    pre_spec_num(InnerNumLength) <= to_integer(unsigned(pre_int(28 downto 1))); -- Conversion from binary to decimal for instruction
                    cylinder(InnerNumLength) <= to_integer(unsigned(pre_int(31 downto 29)));    -- Conversion from binary to decimal for the number of cylinder
                    InnerNumLength <= InnerNumLength +1;                                            -- Incrementing the number of instructions
                    num_length <= InnerNumLength;
                end if;
            elsif (clkcnt = fbaud) then                                                     -- If clkcnt has reached the entire length of the input bit
                clkcnt <= 0;                                                                -- set clkcnt to zero so the process can start from beginning.
            else                                                                            -- If clkcnt is less than or more than half of the entire duration, but surely
                clkcnt <= clkcnt +1;                                                        -- less than the entire duration, then increment the value of the clkcnt.
            end if;
        end if;
    end if;
end process DecoderAndAcquirer;

end Behavioral;

The thing is that, as shown on the picture, when cnt changes, nothing happens to the 31st bit of the instruction. Any ideas why?

Thanks, Bojan

Simulation

Upvotes: 0

Views: 1061

Answers (1)

Morten Zilmer
Morten Zilmer

Reputation: 15924

First PrePLC := PrePLC(158 downto 1) & '0'; mismatches length, so I assume this is to be PrePLC := PrePLC(158 downto 0) & '0'; instead, thus working as shift register.

In process DecoderAndAcquirer of the code there is:

...
pre_int(31) <= PLCinput;
...
if (cnt<32) then
  pre_int <= '0' & pre_int(31 downto 1);
...

So even through pre_int(31) is assigned, it is later overwritten in the pre_int <= '0' & pre_int(31 downto 1); since (cnt<32), whereby the pre_int(31) cant go high yet.

When simulating longer time, cnt goes to 32, and then the an '1' value is shown at pre_int(31); se figure below.

enter image description here

Edited: Below is version with temporary variable for pre_int, just to show the principles; operation is not verified.

DecoderAndAcquirer: process (PLCinput, BusyIN, InnerBusyOut,clk) is
  variable pre_int_v : std_logic_vector(pre_int'range);
begin

    if (clk'event and clk='1') then                                                         -- If rising edge on clock
        pre_int_v := pre_int;  -- Variable update from signal
        if ((BusyIN='0') and (InnerBusyOut='0') and (init='0')) then                        -- Check if FPGA and PLC are ready to exchange information and if init is done
            if (clkcnt = fbaud/2)                    then                                   --  If clkcnt is equal to half of the duration of the input bit then
                pre_int_v(31) := PLCinput;                                                    -- Initialize the last digit of pre_int
                cnt <= cnt+1;                                                               -- Incrementing cnt => going towards bit 2
                clkcnt <=clkcnt+1;                                                          -- Incrementing clkcnt so you can exit this block
                if (cnt<32) then                                                            -- Checking if not last bit
                    pre_int_v := '0' & pre_int_v(31 downto 1);                                  -- If not last bit, shift number to right
                else                                                                        -- else
                    cnt <=0;                                                                -- reset cnt to start with next instruction
                    if (pre_int_v(0)='1') then                                                -- Check if last digit is one
                        LastNumFlag <= '1';                                                 -- If last digit is one, stop acquiring instructions
                    else
                        LastNumFlag <='0';
                    end if;
                    pre_spec_num(InnerNumLength) <= to_integer(unsigned(pre_int_v(28 downto 1))); -- Conversion from binary to decimal for instruction
                    cylinder(InnerNumLength) <= to_integer(unsigned(pre_int_v(31 downto 29)));    -- Conversion from binary to decimal for the number of cylinder
                    InnerNumLength <= InnerNumLength +1;                                            -- Incrementing the number of instructions
                    num_length <= InnerNumLength;
                end if;
            elsif (clkcnt = fbaud) then                                                     -- If clkcnt has reached the entire length of the input bit
                clkcnt <= 0;                                                                -- set clkcnt to zero so the process can start from beginning.
            else                                                                            -- If clkcnt is less than or more than half of the entire duration, but surely
                clkcnt <= clkcnt +1;                                                        -- less than the entire duration, then increment the value of the clkcnt.
            end if;
        end if;
        pre_int <= pre_int_v;  -- Signals update from variable
    end if;
end process DecoderAndAcquirer;

Figure with waveform is shown below.

enter image description here

Upvotes: 1

Related Questions