Reputation: 41
This code is a button debouncer. But I can't understand why there are two flips flops :
reg PB_sync_0; always @(posedge clk) PB_sync_0 <= ~PB; // invert PB to make PB_sync_0 active high
reg PB_sync_1; always @(posedge clk) PB_sync_1 <= PB_sync_0;
Why the autor of this code did not write this ?
reg PB_sync_1; always @(posedge clk) PB_sync_1 <= ~PB;
Here is the full code:
module PushButton_Debouncer(
input clk,
input PB, // "PB" is the glitchy, asynchronous to clk, active low push-button signal
// from which we make three outputs, all synchronous to the clock
output reg PB_state, // 1 as long as the push-button is active (down)
output PB_down, // 1 for one clock cycle when the push-button goes down (i.e. just pushed)
output PB_up // 1 for one clock cycle when the push-button goes up (i.e. just released)
);
// First use two flip-flops to synchronize the PB signal the "clk" clock domain
reg PB_sync_0; always @(posedge clk) PB_sync_0 <= ~PB; // invert PB to make PB_sync_0 active high
reg PB_sync_1; always @(posedge clk) PB_sync_1 <= PB_sync_0;
// Next declare a 16-bits counter
reg [15:0] PB_cnt;
// When the push-button is pushed or released, we increment the counter
// The counter has to be maxed out before we decide that the push-button state has changed
wire PB_idle = (PB_state==PB_sync_1);
wire PB_cnt_max = &PB_cnt; // true when all bits of PB_cnt are 1's
always @(posedge clk)
if(PB_idle)
PB_cnt <= 0; // nothing's going on
else
begin
PB_cnt <= PB_cnt + 16'd1; // something's going on, increment the counter
if(PB_cnt_max) PB_state <= ~PB_state; // if the counter is maxed out, PB changed!
end
assign PB_down = ~PB_idle & PB_cnt_max & ~PB_state;
assign PB_up = ~PB_idle & PB_cnt_max & PB_state;
endmodule
Thanks !
Upvotes: 4
Views: 3852
Reputation: 581
The autor of this code uses 2 flip-flops in order to synchronize PB signal into clk domain.
As he mentioned in a comment "PB" is the glitchy, asynchronous to clk
.
Not synchronizing a signal on a clock domain transition may cause metastability in the system, as toolic referenced en.wikipedia.org/wiki/Metastability_in_electronics
Upvotes: 1