Reputation: 19
I am studying the difference between CISC and RISC recently, and I've encountered into the term "Orthogonality". After doing some research, my understanding so far is that there are two "axes", addressing modes & operations, which are independent of each other, so it produces a maximum number of (#addressing modes * #operations) instructions in the ISA.
For CISC machine, which is a register-memory architecture, operands may come from register or memory and RISC a register-register(or load-store) one on the contrary. So, what's the role of orthogonality playing in these two ISA? Is CISC more orthogonal than RISC or vice versa?
As the wiki describes, "Modern CPUs often simulate orthogonality in a preprocessing step before performing the actual tasks in a RISC-like core. This "simulated orthogonality" in general is a broader concept, encompassing the notions of decoupling and completeness in function libraries, like in the mathematical concept: an orthogonal function set is easy to use as a basis into expanded functions, ensuring that parts don’t affect another if we change one part." What does this paragraph mean? What is the preprocessing step, does it have anything to do with the microcode?
Any explanation are appreciated! Thanks a lot!
Upvotes: 1
Views: 744
Reputation: 26646
I hadn't heard this term orthogonal instruction set
before, however:
The VAX is perhaps the epitome of CISC. The VAX supports many addressing modes, ranging from register itself, to memory specified by various indexing computations (some including pointer advancement, so as to do *p++
or *--p
).
The VAX allows all addressing modes for all operands of any instruction. Further, the VAX allows both 2 operand and 3 operand instructions, so addl2
is operand2 += operand1, and addl3
is operand3 = operand1 + operand2.
Basically it can encode a lot of stuff in a single instruction, so we can do for example, a[i] = *p++ + b[j]
; in one instruction, assuming a
, b
, i
, j
, and p
are in registers.
Other CISC-style processors limit the encoding, for example, so that we can only do two-operand instructions (no 3 operand), and some even limit the 2nd operand to a register, so only one memory operand. I believe this is what they're getting at with the term orthogonal or not.
Meanwhile, a RISC processor instead follows a load/store architecture. Access to memory is not allowed for any operand, but rather only via load and store instructions, and only with those instructions are there addressing modes. Most all arithmetic operations (except the add for addressing) happen between registers alone. (In some sense the RISC philosophy has an orthogonality since all arithmetic operations work on registers alone.)
I don't think the term orthogonality is of high value. I wouldn't dwell on the term itself, but rather take away from that article the comparison between CISC ala VAX, vs. others CISC, vs. RISC.
@Peter also makes a good points, such as that certain registers being hard code (i.e. an implicit source/target) in some architectures for some instructions, which reduces orthogonality.
By that point I might stress that RISC architectures generally don't hard code registers, though MIPS hard codes the return address register ($31) for the jal
instruction whereas RISC V does not ($sp
and $ra
are hard coded but only in the compressed instruction extension). Whereas some CISC architectures (except VAX) hard code more registers.
The MC68000 divides the registers into two sets of 8: addressing registers and data registers, which helps encoding by providing 16 registers with only 3-bit register fields, but also limits what you can do with them (and there aren't enough address registers, since one is the stack pointer and another the global pointer, leaving only 6).
CISC architecture often support byte vs. word sized arithmetic, whereas RISC architectures usually support only word sized arithmetic, so if you want byte, you have to simulate it (i.e. with range check or other).
Upvotes: 0
Reputation: 364240
Maximizing total choices of possible instructions like a CISC is generally not what's meant. Instead it's more about being a simpler compiler target, without complex interactions in what makes an instruction legal or not. RISC machines are often highly orthogonal, and designed with being a compiler target in mind, not human programmers.
My understanding of the term is that orthogonality is more about any register being usable in any case where any other register is usable. Unlike x86 shl reg, cl
where variable-count shifts require a specific register. (I know this is a RISC-V question, but the examples of non-orthogonality I know of come from other ISAs, primarily x86.)
And definitely not like 8086 (before 386), where if you needed to multiply, one of the operands had to be in the accumulator, AL or AX. And sign-extension was also only available there. 386 introduced movsx reg, r/m8
and r/m16
. (And movzx
, allowing easy and more efficient zero-extending of a byte from memory into SI or DI, without having to load 2 bytes and and si, 0x00ff
.)
Even worse, 16-bit addressing modes only allow a few registers in very limited ways: [bp|bx] + [si|di] + disp0/8/16
, vs. 32-bit addressing modes allowing stuff like lea eax, [ecx + ecx + 3]
to use the same register twice, or address memory relative to the stack pointer without having to copy it to the base pointer (BP) register.
Or if some memory operands can use a certain addressing mode, can all memory operands use it? AArch64 ldp
/stp
(load-pair/store-pair of registers) I think has fewer available addressing modes than single-register loads, because it needs 5 extra bits for a second register number. Unlike ARM32 ldrd
where the pair of registers is two contiguous registers, starting with an even number.
In general, the less interaction there is between a choice of one thing (like instruction) and the possible choices for another (a register), the more orthogonal.
One of the major benefits with this is being a simple compiler target. The most optimal code can more often be found with a greedy algorithm that only takes into a account one thing at a time, not interlocking tradeoffs. Not like x86-64 "if I use ECX instead of R9d for this variable, that'll save bytes in multiple instructions not needing REX prefix, but later mean I need an extra mov
to copy a register for a shift count". (x86 BMI2 introduced variable-count shifts that can use a count from any register, like shlx ebx, eax, r15d
)
Or far worse targeting 8086 or 286, where 16-bit addressing modes impose a lot more constraints on register allocation. And you'd more often you'd want to use instructions that needed their operands in specific registers, especially the accumulator.
But if you're not worried about every byte of code size, x86-64 is a fairly orthogonal ISA, usually you don't need to care about which register you use for what. One change in that direction beyond 386's important changes was making the low byte of every register addressable, like bpl
, spl
, sil
, dil
as the low bytes of RBP, RSP, RSI, RDI. (But those require REX prefixes, overlapping encodings with AH/CH/DH/BH which are only usable in instructions without REX prefixes.)
Another example of non-orthogonality is x86's notorious integer SIMD extensions, MMX and SSE2. Want to do minimum of unsigned integers 16 bytes at a time? In SSE2 we have pminub
for unsigned byte elements. And pminsw
, signed 16-bit elements. But no other combination of size and signedness until SSE4.1, several years later, which filled in the gaps allowing signed bytes and u16, as well as i32 and u32. And then AVX-512 added i64 and u64. Every min
available always had a corresponding max
, but other than that, SSE2 was highly non-orthogonal in that and many other ways, including signed/unsigned saturating add/sub, and pack of wider to narrower elements with signed or unsigned saturation. And FP vs. integer shuffles, e.g. there's no integer equivalent to shufps
that takes two elements from one vector, two from another, using an immediate control operand. Fortunately for shuffles you can use FP shuffles on integer data.
x86 SIMD is still not very orthogonal in many ways, for example in integer multiply where not all combinations of element size are available for everything; 16-bit has 16x16 => 16-bit low half, signed high half, or unsigned high half. (And a widening multiply and horizontal-add, pmaddwd
). 32-bit has signed and unsigned widening 32x32 => 64-bit, and with SSE4.1 also non-widening. 8-bit only has a multiply and horizontal-add where one operand is treated as signed, the other as unsigned.
Again, if I'm picking on x86 a lot, it's because it's what I know. And Intel painted a huge "kick me" sign on their back when they designed MMX and SSE2, only taking some steps to fix things later with SSE4.1. (I'm sure there are reasons for some of those choices, including transistor budget and opcode coding-space in x86's notoriously cramped machine-code.) But a lot of programs don't want to assume SSE4.1 as a requirement to run at all, even now, over a decade since the first SSE4.1 CPUs. Most other SIMD ISAs are more orthogonal than x86, like ARM NEON or PowerPC AltiVec.
Anyway, in general, it's more orthogonal if all operations are available in all combinations of size and signedness that exist for any operation. This isn't always a big deal for compilers per-se, more for humans not realizing that a compiler could make their code faster if this variable was unsigned or something.
Modern CPUs often simulate orthogonality in a preprocessing step before performing the actual tasks in a RISC-like core
That sounds like they're talking about decoding to uops, but I don't see how that would gain orthogonality.
Unless they're counting the concept of any instruction allowing a memory source operand as being more orthogonal. Normally you wouldn't, being a load/store architecture is basically a fixed constraint that doesn't make other things harder.
But if you do consider that more orthogonal, then yes, decoding add eax, [rdi]
to 2 uops lets it run on a back-end that separates the load work from the store work, like a RISC.
Upvotes: 1