Reputation: 51
How can I avoid variable in this loop (outside the process)?
variable var1 : std_logic_vector (ADRESS_WIDTH-1 downto 0) := (others => '0');
for i in 0 to ADRESS_WIDTH-2 loop
var1 := var1 + '1';
with r_addr select
fifo_data_out <= array_reg(i) when var1,
end loop;
array_reg(ADRESS_WIDTH-1) when others;
This version (in process) isn't correct too - syntax errors
process (r_addr, r_addr1, fifo_data_out, array_reg, r_data1)
variable var1 : std_logic_vector (ADRESS_WIDTH-1 downto 0) := (others => '0');
begin
case r_addr is
when "0000000000" => fifo_data_out <= array_reg(0);
for i in 1 to ADRESS_WIDTH-2 loop
when var1 => fifo_data_out <= array_reg(i);
var1 := var1 + '1';
end loop;
when others => fifo_data_out <= array_reg(ADRESS_WIDTH-1);
end case;
Upvotes: 1
Views: 5555
Reputation: 1018
There's a bunch of things that aren't quite right on your implementation. Completely agnostic of what you're trying to accomplish there are some things with VHDL that should be remembered:
Now, looking at your code I see what looks like what you want to accomplish, and this is a perfect example of why you should know a little bit of scripting in another language to help out hardware level programming. You should be as specific as possible when creating a process, know what you want to accomplish and in what bounds, I know this is like every other languages but hardware programming gives you all the tools to hang yourself very very thoroughly. Here's the best that I can make out from your code to clean things up.
async_process : process (r_addr, fifo_data_out, array_reg)
begin
case r_addr is
when "0000000000" => fifo_data_out <= array_reg(0);
when "0000000001" => fifo_data_out <= array_reg(1);
when "0000000002" => fifo_data_out <= array_reg(2);
when others => fifo_data_out <= array_reg(ADRESS_WIDTH-1);
end case;
end process;
r_addr_inc_process : process (clock <or other trigger>, reset)
<This is where you would deal with the bounds of the register address.
If you still want to deal with that variable, do it here.>
end process;
So, as you can see from this, you want to update as few things as possible when you're dealing with a process, this way your sensitivity list is extremely specific, and you can force most updating to occur synchronously instead of asynchronously. The reason your async process can be as such is that it will update every time r_addr is updated, and that happens every clock read, or on some flag, and it gives you a consistent reset state.
With how iterative the process is, you can see how using a scripting language to fill in the 100's of register values would help it from being very time consuming.
Upvotes: 1