Reputation: 1
I'm a begginer of Verilog. I read a several materials about recommended Verilog coding styles like this paper and stackoverflow's questions.
Now, I learned from them that "two always block style" is recommended; separate a code into two parts, one is a combinational block that modifies next
, and the another is a sequential block that assigns it to state
reg like this.
reg [1:0] state, next;
always @(posedge clk or negedge rst_n)
if (!rst_n)
state <= IDLE;
else
state <= next;
always @(state or go or ws) begin
next = 'bx;
rd = 1'b0;
ds = 1'b0;
case (state)
IDLE : if (go) next = READ;
else next = IDLE;
...
And here is my question. All example codes I found have only one pair of registers named state
and next
.
However, if there are multiple regs that preserve some kinds of state, how should I write codes in this state
-and-next
style?
Preparing next
regs corresponding to each of them looks a little redundant because all regs will be doubled.
For instance, please look at an UART sender code of RS232c I wrote below.
It needed wait_count
, state
and send_buf
as state
regs. So, I wrote corresponding wait_count_next
, state_next
and send_buf_next
as next
for a combinational block. This looks a bit redundant and troublesome to me. Is there other proper way?
module uart_sender #(
parameter clock = 50_000_000,
parameter baudrate = 9600
) (
input clk,
input go,
input [7:0] data,
output tx,
output ready
);
parameter wait_time = clock / baudrate;
parameter send_ready = 10'b0000000000,
send_start = 10'b0000000001,
send_stop = 10'b1000000000;
reg [31:0] wait_count = wait_time,
wait_count_next = wait_time;
reg [9:0] state = send_ready,
state_next = send_ready;
reg [8:0] send_buf = 9'b111111111,
send_buf_next = 9'b111111111;
always @(posedge clk) begin
state <= state_next;
wait_count <= wait_count_next;
send_buf <= send_buf_next;
end
always @(*) begin
state_next = state;
wait_count_next = wait_count;
send_buf_next = send_buf;
case (state)
send_ready: begin
if (go == 1) begin
state_next = send_start;
wait_count_next = wait_time;
send_buf_next = {data, 1'b0};
end
end
default: begin
if (wait_count == 0) begin
if (state == send_stop)
state_next = send_ready;
else
state_next = {state[8:0], 1'b0};
wait_count_next = wait_time;
send_buf_next = {1'b1, send_buf[8:1]};
end
else begin
wait_count_next = wait_count - 1;
end
end
endcase
end
assign tx = send_buf[0];
assign ready = state == send_ready;
endmodule
Upvotes: 0
Views: 2245
Reputation: 12344
I think you did a good job and correctly flopped the variables. The issue is that without flops you would have a loop. i.e. if you write something like the following, the simulation will loop and silicon will probably burn out:
always_comb wait_count = wait_count - 1;
So, you need to stage this by inserting a flop:
always_ff @(posedge clk)
wait_count <= wait_count - 1;
Or in your case you you used an intermediate wait_count_next
which is a good style:
always_ff @(posedge clk)
wait_count_next <= wait_count;
always_comb
wait_count = wait_count_next;
You might or might not have an issue with the last assignments. Which version of the signals you want to assign to tx
and ready
? the flopped one or not?
And yes, you can split theses blocks in multiple blocks, but in this case there seems to be no need.
And yes, the other style would be write everything in a single flop always block. But this will reduce readability, will be more prone to your errors and might have synthesis issues.
Upvotes: 1