Reputation:
My code generates two latches, could please someone help me finding why? According to Xilinx ISE latches are generated because of "try_counter" which is a counter for how many times you get a numeric sequence wrong. (which is the main point of my code).
I don't know what else to do.
entity moore is
Port ( badgeSx : in STD_LOGIC;
badgeDx : in STD_LOGIC;
col : in std_logic_vector (1 to 3);
row : in std_logic_vector (1 to 4);
clk : in std_logic;
rst : in std_logic;
unlock : out STD_LOGIC
);
end moore;
architecture Behavioral of moore is
type stato is (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9);
signal current_state,next_state : stato;
signal badge : std_logic_vector(1 downto 0);
signal count, new_count: integer range 0 to 28;
signal temp_unlock : std_logic :='0';
signal timeover : std_logic :='0';
begin
badge <= badgeDx & badgeSx; --concatenazione dei badge
--processo sequenziale
current_state_register: process(clk)
begin
if rising_edge(clk) then
if (rst = '1') then
current_state <= s0;
count <= 0;
else
current_state <= next_state;
count <= new_count;
end if;
end if;
end process;
process (current_state,badge,col,row,timeover)
variable try_counter: integer range 0 to 3;
begin
case current_state is
when s0 =>
try_counter := 0;
temp_unlock <= '0';
unlock <='0';
if(badge ="01" and row = "0000" and col = "000" ) then
next_state <= s1;
else
next_state <= s0;
end if;
when s1 =>
temp_unlock <= '1';
unlock <= '0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s2;
elsif (timeover ='1' or badge = "10" or try_counter = 3) then
next_state <= s0;
else
next_state <= s1;
try_counter := try_counter +1;
end if;
when s2 =>
temp_unlock <= '0';
unlock <='0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s2;
else
next_state <= s3;
end if;
when s3 =>
temp_unlock <= '1';
unlock <= '0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s4;
elsif (timeover ='1' or badge = "10" or try_counter = 3) then
next_state <= s0;
else
next_state <= s1;
try_counter := try_counter +1;
end if;
when s4 =>
temp_unlock <= '0';
unlock <='0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s4;
else
next_state <= s5;
end if;
when s5 =>
temp_unlock <= '1';
unlock <= '0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s6;
elsif (timeover ='1' or badge = "10" or try_counter = 3) then
next_state <= s0;
else
next_state <= s1;
try_counter := try_counter +1;
end if;
when s6 =>
temp_unlock <= '0';
unlock <='0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s6;
else
next_state <= s7;
end if;
when s7 =>
temp_unlock <= '1';
unlock <= '0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s8;
elsif (timeover ='1' or badge = "10" or try_counter = 3) then
next_state <= s0;
else
next_state <= s1;
try_counter := try_counter +1;
end if;
when s8 =>
temp_unlock <= '0';
unlock <='0';
if (badge = "00" and col ="001" and row = "0001" and timeover = '0') then
next_state <= s8;
else
next_state <= s9;
end if;
when s9 =>
temp_unlock <= '0';
unlock <= '1';
if (badge = "10") then
next_state <= s0;
else
next_state <= s5;
end if;
when others =>
next_state <= s0;
end case;
end process;
Contatore_TIMER : process(temp_unlock,count)
begin
if temp_unlock = '1' then
if count = 28 then
new_count<=0;
timeover<='1';
else
new_count<=count+1;
timeover<='0';
end if;
else
new_count<=0;
timeover <= '0';
end if;
end process;
end Behavioral;
The code nearly works as expected (I mean it compiles and I don't get any error) but the RTL schematic isn't what it is supposed to be since it synthesises latches in the process.
Upvotes: 0
Views: 96
Reputation: 15934
In the apparently combinatorial process with process (current_state,badge,col,row,timeover)
, the variable try_counter
is used to store information (sequential behaviour), which is only updated when process evaluation is triggered. This will very likely to generate the 2 latches, which matches the value range from 0 to 3 for try_counter
.
To fix this, you can define try_counter
as a signal, and include it in the sensitivity list for the process.
Having try_counter
as a signal will also ease debugging, since the current state can easily be inspected in waveforms.
Upvotes: 2